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Small-disturbance angle stability analysis and improvement Examples of electromechanical oscillations

Examples of electromechanical oscillations

The 5-bus system (studied in previous lectures) illustrating a local plant mode

X= 0.32 ohm/km

EQU.

130 km 20 km

1 3

2

4

5

225 kV

15 kV20 kV

short-circuit 
power: 6000 MVA

500 MVA
X’’=0.20 pu

X=0.15 pu
500 MVA

231.75/20 kV/kVX=0.15 pu
250 MVA

222.75/20 kV/kV

wC/2= 1.5 microS/kmX/R= 10

50 Hz

"1-3"

"1-3b"

"3-4"

"3-4b"
oscillation of one machine against
the rest of the system

response of machine rotor speed
to a 10 % drop of Thévenin e.m.f.
lasting 0.05 s

period ' 1 s
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Small-disturbance angle stability analysis and improvement Examples of electromechanical oscillations

The “Kundur” test system illustrating an interarea oscillation

(almost) no power flow between left and right parts

oscillation of machines 1
and 2 against machines
3 and 4

response of machine
rotor speeds
to a 1 % increase of
load at bus 9

period ' 2 s
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Small-disturbance angle stability analysis and improvement Examples of electromechanical oscillations

The “Kundur” test system illustrating an interarea oscillation

400 MW power flow from left and to right part

oscillation of machines 1
and 2 against machines
3 and 4 with a different
mode shape

response of machine
rotor speeds
to a 1 % increase of
load at bus 9

period ' 2 s
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Small-disturbance angle stability analysis and improvement Examples of electromechanical oscillations

Classification of oscillation modes

Local modes: involve a small part of the system

rotor angle oscillations of a single generator or a single plant against the rest
of the system: local plant mode

can be studied using a one-machine infinite-bus system

oscillations between rotors of a few generators close to each other:
intermachine or interplant mode oscillations

typical range of frequencies of local plant and interplant modes: 0.7 to 2 Hz

may also be associated with inappropriate tuning of a control equipment
(excitation system, HVDC converter, SVC, etc.): control mode

Global modes: involve large areas of the system, widespread effects

oscillations of a large goup of generators in one area swinging against a group
of generators in another area: interarea mode

usually, the larger the group of generators, the slower the oscillations

typical range of frequencies of interarea modes: 0.1 to 0.7 Hz

more complex to analyse and to damp
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Small-disturbance angle stability analysis and improvement Objectives of this lecture

Objectives of this lecture

Present an approach to analyse the small-disturbance stability of a system
described by an algebraic-differential model

apply this approach to a simple one-machine infinite-bus system (typical of a
local plant mode study)

derive the model
compute (one of) its equilibrium point(s)
analyze the small-disturbance stability of this equilibrium

present a method to improve small-disturbance stability by correcting
troublesome eigenvalues

apply this method to the design of a “power system stabilizer” acting on the
one-machine infinite-bus system

practice this with Matlab.
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Small-disturbance angle stability analysis and improvement Model of a one-machine infinite-bus system

Model of a one-machine infinite-bus system

Simplifying assumptions

d axis: only the field winding is considered
q axis: only one winding (q1) is considered, to simulate a damper
the stator resistance is neglected
saturation is neglected
mechanical torque Tm is considered constant
rotor speed remains close to nominal value: ω ' 1 pu
a very simple Automatic Voltage Regulator (AVR) model is considered:

G

1 + sT

+

−
V

Vo

vf
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Small-disturbance angle stability analysis and improvement Model of a one-machine infinite-bus system

Network equations under the phasor approximation

re

im

x

y

ωN t

V∞ ejωN t

Phasor of voltage at infinite bus: zero phase angle.

(x , y) reference axes: rotate at nominal angular speed ωN , and the axis x
coincides with the rotating vector relative to the infinite bus voltage.

V̄ = V∞∠0 + jXe Ī ⇔ vx + jvy = V∞ + jXe (ix + j iy )

Decomposing in real and imaginary parts:

vx = V∞ − Xe iy (1)

vy = Xe ix (2)

All variables and parameters are in per unit.
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Small-disturbance angle stability analysis and improvement Model of a one-machine infinite-bus system

Park equations of synchronous machine under the phasor approximation

ψd = Ldd id + Ldf if (3)

ψq = Lqq iq + Lqq1iq1 (4)

ψf = Lff if + Ldf id (5)

ψq1 = Lq1q1iq1 + Lqq1iq (6)

1

ωN

d

dt
ψf = K vf − Rf if (7)

1

ωN

d

dt
ψq1 = −Rq1iq1 (8)

vd = −ωψq = −ψq (9)

vq = ωψd = ψd (10)

2H
d

dt
ω = Tm − Te = Tm − (ψd iq − ψq id ) (11)

1

ωN

d

dt
δ = ω − 1 (12)

All variables are in per unit, except δ which is in rad and t in seconds.
Hence, the factor tB = 1/ωN in Eqs. (7, 8, 12), where ωN is in rad/s.
All parameters are in per unit, except H which is in seconds.
vf is in per unit on the AVR voltage base. K is a factor to pass from the AVR
base to the machine base, which is used in Eq. (7).
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Small-disturbance angle stability analysis and improvement Model of a one-machine infinite-bus system

Change of reference axes: from machine (d , q) to system (x , y) reference

in this system: c = 0 and ωref = ωN

vq + jvd = e−jδ(vx + j vy ) = (cos δ − j sin δ)(vx + j vy )

Decomposing into real and imaginary components:

vd = − sin δ vx + cos δ vy (13)

vq = cos δ vx + sin δ vy (14)

Similarly for the current:

id = − sin δ ix + cos δ iy (15)

iq = cos δ ix + sin δ iy (16)
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Small-disturbance angle stability analysis and improvement Model of a one-machine infinite-bus system

Automatic voltage regulator

d

dt
vf =

−vf + G (Vo − V )

T
=
−vf + G (Vo −

√
v2

x + v2
y )

T
(17)

t and T are in seconds

Vo ,V , vx and vy are in per unit on the network base voltage

vf is in per unit on the AVR voltage base VfB

commonly used base: VfB = field voltage that produces V = 1 pu at the
terminal of the machine rotating at nominal speed with stator open.

id = iq = 0 ⇒ ψd = Ldf if and ψq = 0 ⇒ vq = Ldf if and vd = 0

⇒ V = 1 =
√

v2
d + v2

q = Ldf if ⇒ if =
1

Ldf

dψf

dt
= 0 and vf = 1 ⇒ K = Rf if =

Rf

Ldf

G is the AVR open-loop gain in pu/pu
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Small-disturbance angle stability analysis and improvement Model of a one-machine infinite-bus system

Variables and equations are balanced

17 variables:

5 differential: ψf , ψq1, ω, δ, vf

12 algebraic: vx , vy , ix , iy , vd , vq, id , iq, if , iq1, ψd , ψq

17 equations:

5 differential: Eqs. (7, 8, 11, 12, 17)

12 algebraic: Eqs. (1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16)

Comments

In this simple system, some or all algebraic variables (and an equal number of
algebraic equations) could be eliminated, thus yielding a smaller model;

however, the techniques shown hereafter do not require performing such
manipulations;

on the contrary, keeping them in the model allow us to illustrate how
differential-algebraic models are treated in practice.
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Small-disturbance angle stability analysis and improvement Small-disturbance stability analysis

Small-disturbance stability analysis

Linearization of a system described by differential equations

Consider a system described by the differential equations:

ẋ = f(x) dim x = dim f = n

Let x? be an equilibrium point : f(x?) = 0

Consider an infinitesimal variation of x around x?: ∆x = x− x?

The dynamics of ∆x is given by:

∆̇x = ẋ = f(x) ' f(x?) +
∂f

∂x

)
x?

(x− x?) =
∂f

∂x

)
x?

∆x

where
∂f

∂x
is the Jacobian of f with respect to x:

[
∂f

∂x

]
ij

=
∂fi
∂xj

i , j = 1, . . . , n

∂f

∂x

)
x?

is the state matrix of the linearized system.
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Small-disturbance angle stability analysis and improvement Small-disturbance stability analysis

Stability of the equilibrium x?

Assessed from the n eigenvalues of
∂f

∂x

)
x?

:

if all eigenvalues have negative real parts, x? is stable;
x? is a sink or stable node

if at least one eigenvalue has a positive real part, x? is unstable

all eigenvalues with positive real part: x? is a source or unstable node
some eigenvalues with positive real part: x? is a saddle.

if the eigenvalues have negative real parts, except some of them which have a
zero real part, stability cannot be decided; higher-order terms of the Taylor
series expansion have to be investigated.

In practice, to have some “margin” with respect to instability, the eigenvalues
must be “at some distance” from the right half complex plane.
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Small-disturbance angle stability analysis and improvement Small-disturbance stability analysis

Linearization of a system described by differential-algebraic equations

Consider a system described by the algebraic-differential equations:

ẋ = f(x, y) dim x = dim f = n (18)

0 = g(x, y) dim g = dim y = m (19)

Let (x?, y?) be an equilibrium point :

0 = f(x?, y?)

0 = g(x?, y?)

Implicit function theorem. Let ∂g
∂y be the Jacobian of g with respect to y. At a

point (x, y) where ∂g
∂y is nonsingular, there exists a unique and differentiable

function ϕ such that locally:
y = ϕ(x)

Then, substituting ϕ(x) to y in (18) yields the differential (only) model:

ẋ = f(x,ϕ(x)) = F(x)

Stability has to be studied on the (n × n) Jacobian of F with respect to x !
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Small-disturbance angle stability analysis and improvement Small-disturbance stability analysis

Except in simple cases, the analytical expression of ϕ cannot be derived

instead, the differential-algebraic model is linearized and the algebraic states
are eliminated, as shown next.

With the same notation as in the previous slides:

∆̇x =
∂f

∂x

)
x=x?,y=y? ∆x +

∂f

∂y

)
x=x?,y=y? ∆y (20)

0 =
∂g

∂x

)
x=x?,y=y? ∆x +

∂g

∂y

)
x=x?,y=y? ∆y (21)

Assuming that
∂g

∂y

)
x=x?,y=y? is nonsingular1:

∆y = −
(
∂g

∂y

)−1
∂g

∂x
∆x ⇒ ∆̇x =

[
∂f

∂x
− ∂f

∂y

(
∂g

∂y

)−1
∂g

∂x

]
︸ ︷︷ ︸

A

∆x

Stability is analyzed from the eigenvalues of the reduced Jacobian A.

1the dependency on the linearization point is omitted for simplicity of notation
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Small-disturbance angle stability analysis and improvement Small-disturbance stability analysis

What if ∂g
∂y is singular ?

A point (x, y) where ∂g
∂y is singular is called a singularity.

For a small variation of x, the variation of y becomes infinitely large

the system dynamics becomes undefined; numerical integration cannot
proceed

the mathematical model stops matching the physical system (whose time
evolution cannot stop !)

singularities often originate from model simplifications: some dynamics
assumed infinitely fast and replaced by algebraic equilibrium conditions.

Extension to model with inputs and outputs

Consider a system described by:

ẋ = f(x, y,u) (22)

0 = g(x, y,u) (23)

z = h(x, y,u) (24)

where u is a vector of inputs (or controls) and z of outputs (or measurements).
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Small-disturbance angle stability analysis and improvement Small-disturbance stability analysis

After linearization:

∆̇x =
∂f

∂x
∆x +

∂f

∂y
∆y +

∂f

∂u
∆u (25)

0 =
∂g

∂x
∆x +

∂g

∂y
∆y +

∂g

∂u
∆u (26)

∆z =
∂h

∂x
∆x +

∂h

∂y
∆y +

∂h

∂u
∆u (27)

Extracting ∆y from (26) and substituting in (25,27):

∆̇x =

[
∂f

∂x
− ∂f

∂y

(
∂g

∂y

)−1
∂g

∂x

]
︸ ︷︷ ︸

A

∆x +

[
∂f

∂u
− ∂f

∂y

(
∂g

∂y

)−1
∂g

∂u

]
︸ ︷︷ ︸

B

∆u (28)

∆z =

[
∂h

∂x
− ∂h

∂y

(
∂g

∂y

)−1
∂g

∂x

]
︸ ︷︷ ︸

C

∆x +

[
∂h

∂u
− ∂h

∂y

(
∂g

∂y

)−1
∂g

∂u

]
︸ ︷︷ ︸

D

∆u (29)

Standard form of a linear system with inputs and outputs.
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Small-disturbance angle stability analysis and improvement Exercises using MATLAB

Exercises using MATLAB

System Data

All values in per unit refer to the nominal apparent power of the machine

Xe = 0.45 pu fN = 50 Hz

Synchronous machine:

X` = 0.2 2 Xd = 2.2 X ′d = 0.3 Xq = 2.2 pu X ′q = 0.25 pu

T ′do = 7.0 s T ′qo = 0.4 s H = 4 s

Automatic Voltage Regulator:

T = 0.4 s G = 70 pu/pu

Operating point: voltage, active and reactive powers of machine specified

V = 1 pu P = 0.7 pu Q = 0.15 pu

2X` is the leakage reactance
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Small-disturbance angle stability analysis and improvement Exercises using MATLAB

Deriving the inductances and resistances of the model (EMFL pu system)

Ldd = Xd = 2.2 Lqq = Xq = 2.2 pu

tB =
1

ωN
=

1

2πfN
= 3.183 10−3 s

T ′do pu =
T ′do s

tB
= 2199 pu T ′qo pu =

T ′qo s

tB
= 125.7 pu

Ldf = Ldd − X` = 2.0 Lqq1 = Lqq − X` = 2.0 pu

X ′d = L′d = Ldd −
L2

df

Lff
⇒ Lff =

L2
df

Ldd − X ′d
= 2.105 pu

X ′q = L′q = Lqq −
L2

qq1

Lq1q1
⇒ Lq1q1 =

L2
qq1

Lqq − X ′q
= 2.051 pu

T ′do =
Lff

Rf
⇒ Rf =

Lff

T ′do

= 9.573 10−4 pu

T ′qo =
Lq1q1

Rq1
⇒ Rq1 =

Lq1q1

T ′qo

= 1.632 10−4 pu

K =
Rf

Ldf
= 4.787 10−4 pu
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Small-disturbance angle stability analysis and improvement Exercises using MATLAB

Values of the differential and algebraic states at the operating point

V∞ = 0.9843 vx = 0.9474 vy = 0.3200 pu

ix = 0.7112 iy = 0.0819 pu δ = 1.1842 rad

id = −0.6278 iq = 0.3440 vd = −0.7568 vq = 0.6536 pu

ψd = 0.6536 ψq = 0.7568 ψf = 0.8863 ψq1 = 0.6880 pu

if = 1.0174 iq1 = 0 vf = 2.0348 pu

Short exercises

Check that these values of vx , vy , ix and iy yield P = 0.7 and Q = 0.15 pu

same question using vd , vq, id and iq

compute the electromagnetic torque Te in pu. Comment on its value

compute the magnitude of the e.m.f Eq behind synchronous reactances
(i) from the value of if ; (ii) from the equation: Ēq = V̄ + jXd Īd + jXq Īq
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Small-disturbance angle stability analysis and improvement Exercises using MATLAB

The Matlab script omib.m

derives the inductances and resistances of the model as shown in slide # 20

computes the state variables at the operating point as shown in slide # 21

computes the “full” Jacobian:

J =



∂f

∂x

∂f

∂y

∂f

∂u

∂g

∂x

∂g

∂y

∂g

∂u

∂h

∂x

∂h

∂y

∂h

∂u


for the particular case:

z = ω u = Vo

computes the matrices A,B,C and D of the linearized system
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Small-disturbance angle stability analysis and improvement Exercises using MATLAB

Exercise # 1

Compute the system eigenvalues assuming: constant flux ψf , constant flux
ψq1 and constant voltage vf

compute the system eigenvalues assuming: constant flux ψq1 and constant
voltage vf . Comment on the influence of the field winding

compute the system eigenvalues assuming constant voltage vf . Comment on
the influence of the q1 (damper) winding

compute the system eigenvalues under AVR control

compare the period of electromechanical oscillations in all four cases.

Exercise # 2

How do the system eigenvalues evolve when increasing the active power to
P = 0.9 pu (leaving Q and V unchanged) ?

How do the system eigenvalues evolve when increasing the gain G from 70 to
120 (keeping T = 0.4 s) ?

How do the system eigenvalues evolve when decreasing the time constant T
from 0.4 to 0.1 s (keeping G = 70) ?
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Small-disturbance angle stability analysis and improvement Exercises using MATLAB

Exercise # 3

With P = 0.9 pu and V = 1 pu, determine, with an accuracy of 0.05 pu, the
maximum reactive power that the generator :

can produce

can absorb

without the operating point becoming unstable, under AVR control.

Which eigenvalues become unstable ?

24 / 36



Small-disturbance angle stability analysis and improvement Design of a stabilizing feedback by the method of residues

Design of a stabilizing feedback by the method of residues

Left and right eigenvectors

Consider an n × n matrix A with all distinct and nonzero eigenvalues λi .

Let vi be the right eigenvector3 of λi :

Avi = λivi (i = 1, . . . , n)

and wi the left eigenvector of λi :

w
T
i A = λiw

T
i ⇔ A

T
wi = λiwi (i = 1, . . . , n)

Let V (resp. W ) be the matrix of right (resp. left) eigenvectors:

V =
[
v1 . . . vn

]
W =

 wT
1
...
wT

n


It is easily shown that : W = V

−1 and WAV = diag(λi )

3notation: all vectors are column vectors
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Small-disturbance angle stability analysis and improvement Design of a stabilizing feedback by the method of residues

Controllability and observability of a mode

Consider a system with state vector x , a scalar input u and a scalar output y :

ẋ = Ax + bu z = c
T
x + du

Consider the change of variables : x̃ = Wx .

W
−1 ˙̃x = AW

−1
x̃ + bu z = c

T
W
−1
x̃ + du

˙̃x = WAW
−1
x̃ + Wbu = Λx̃ + Wbu z = c

T
V x̃ + du

where Λ = diag(λi )

For the i-th “mode” λi :

the larger (Wb)i = wT
i b, the more the mode can be controlled by u

the larger (cTV )i = cTvi , the more the mode can be observed in z .

26 / 36



Small-disturbance angle stability analysis and improvement Design of a stabilizing feedback by the method of residues

Transfer function and residues

F (s) =
Z (s)

U(s)
= c

T
V (sI −Λ)−1

Wb + d

=
[
cTv1 . . . cTvn

]
diag

(
1

s − λi

) wT
1 b

...
wT

n b

+ d

=
n∑

i=1

cTviw
T
i b

s − λi
+ d =

n∑
i=1

Ri

s − λi
+ d

The residue Ri relative to the i-th mode λi :

depends on both the observability and the controllability of λi

is even smaller than F (s) has a zero ζk close to λi . Indeed:

Ri = lim
s→λi

(s − λi )F (s) = lim
s→λi

(s − λi )

∏m
k=1(s − ζk )∏n
j=1(s − λj )

= lim
s→λi

∏m
k=1(s − ζk )∏n

j=1,j 6=i (s − λj )

would be zero in case of exact zero-pole cancellation.
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Small-disturbance angle stability analysis and improvement Design of a stabilizing feedback by the method of residues

Synthesis of a stabilizing feedback using residues

Consider a compensator
using z as input and acting on u

F (s)

K G(s)

+

+ u z

uncompensated system

compensator

Which condition should be satisfied by the transfer function G (s) in order to
stabilize the mode λc of the uncompensated system ?

The closed-loop transfer function is
F (s)

1− KF (s)G (s)

Let s̃ be one of the closed-loop poles:

1− KF (s̃)G (s̃) = 0

1− K

[∑
i

Ri

s̃ − λi
+ d

]
G (s̃) = 0

1− K
∑
i 6=c

Ri

s̃ − λi
G (s̃)− K

Rc

s̃ − λc
G (s̃)− KdG (s̃) = 0 (30)
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Small-disturbance angle stability analysis and improvement Design of a stabilizing feedback by the method of residues

Consider a closed-loop pole s̃ lying on
the branch of the root locus which starts
from the open-loop pole λc .

s̃
λc

When the compensator gain K tends to zero, s̃ tends to λc .

Keeping the dominant terms only in (30):

1− Rc G (λc ) lim
K→0

K

s̃ − λc
= 0 or lim

K→0

s̃ − λc

K
= Rc G (λc )

In the complex plane lim
K→0

s̃ − λc

K
is a vector tangent to the branch of the root

locus starting from λc .

In order to shift the eigenvalue λc to the left :

the branch of the root locus should leave λc at an angle of 180 degrees

Rc G (λc ) should be a real negative number

G (s) must be such that ∠G (λc ) = ± 180o − ∠Rc
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Small-disturbance angle stability analysis and improvement Improvement of small-disturbance angle stability

Improvement of small-disturbance angle stability

Principle :

increase the damping torques of synchronous machines

move the complex eigenvalues corresponding to the unstable or badly
damped mode into the desired region of the complex plane.

How and where ?

add a power system stabilizer acting through the Automatic Voltage
Regulator (AVR): the less expensive solution

take advantage of the presence of power electronics-base components to vary

the shunt susceptance of a Static Var Compensator (SVC)
the active power flowing through a High Voltage Direct Current (HVDC) link
the series reactance of a Thyristor Controlled Series Capacitor (TCSC)
another Flexible AC Transmission System (FACTS) device.
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Small-disturbance angle stability analysis and improvement Power System Stabilizers

Power System Stabilizers (PSS)

stator

field
winding

excitation
system

automatic
voltage

regulator

V+

−

Vo

Kpss G(s)

+

rotor speed ω

generator active power P
accelerating power Pm − P

frequency f at AC bus

power system stabilizer

one or several of the signals:

Let λc be the badly-damped/unstable electromechanical mode.

Since λc is close to the imaginary axis: λc ' j imag(λc ) = j ωc

The PSS increases the damping torque in a range of frequencies around ωc .
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Small-disturbance angle stability analysis and improvement Power System Stabilizers

The PSS transfer function decomposes into:

KpssG (s) = KpssG1(s)G2(s)G3(s)

Transfer function G1(s) :

shifts λc to the left in the complex plane by bringing a phase compensation
according to the residue method :

∠G1(λc ) ' ∠G1(j ωc ) = ± 180o − ∠Rc

G1(s) corresponds to one or several lead-lag filters: see slide # 35

the latter are “tuned” to provide their maximum phase shift φm at the
frequency ωc
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Small-disturbance angle stability analysis and improvement Power System Stabilizers

Transfer function G2(s) :

in steady state and for slow variations, the PSS must not affect voltage
regulation

G2(s) is a washout (or high-pass) filter: see slide # 36

Tw is taken large enough to not modify the phase angle of G1 for frequencies
around ωc . For instance:

10

Tw
' ωc

10

Transfer function G3(s) (optional) :

in a thermal power plant, the turbine stages, the generator and the exciter
are mounted on a relatively long shaft. The latter has torsional oscillation
frequencies in the range 10− 15 Hz and higher

the PSS must not excite those frequencies

the risk is higher for a PSS using the rotor speed as input signal

in this case, G3 is a low-pass filter so that the PSS contribution is negligible
at the lowest torsional frequency and above.
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Small-disturbance angle stability analysis and improvement Power System Stabilizers

Gain Kpss :

adjusted until the corrected mode λ̃c has a damping ratio :

ξ =
−real(λ̃c )

|λ̃c |
=

−real(λ̃c )√
[real(λ̃c )]2 + [imag(λ̃c )]2

higher than some value :
ξ ≥ 0.05− 0.10

while Kpss is increased, the other eigenvalues are monitored since they might
move to the right (the residue method allows controlling a single mode !)

for excessive values of Kpss , the branch of the root locus that starts from λc

might “bend” to the right (the residue method focuses on a neighbourhood
of the mode to correct !)
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Small-disturbance angle stability analysis and improvement Lead-lag filter

Lead-lag filter

G (s) =
1 + sατ

1 + sτ

α > 1 to obtain phase lead α < 1 to obtain phase lag

Bode plot
(lead filter)

Angular frequency at which the phase is maximum: ωm =
1

τ
√
α

Maximum phase: φm = arcsin
α− 1

α + 1
⇒ α =

1 + sinφm

1− sinφm

To obtain φm > 60o use two filters in cascade, etc.
35 / 36



Small-disturbance angle stability analysis and improvement Washout filter

Washout filter

G (s) =
s

1 + sTw

Bode plot

The phase is negligible for ω >
10

Tw
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