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The phasor approximation explained with an example System modelling

System modelling

Refer to lecture “Behaviour of synchronous machine during a short-circuit (a
simple example of electromagnetic transients)”.

va, vb, vc

ia, ib, ic

∼

Le Re

synchronous

machine +
−ideal voltage

source

ea, eb, ec

Network :
resistance Re and inductance Le in each phase
no magnetic coupling between phases, for simplicity.

ea =
√

2E cos(ωNt + θe) eb =
√

2E cos(ωNt + θe −
2π

3
) ec = . . .

Machine :
field winding f in the d axis
one damper winding q1 in the q axis
constant rotor speed : θr = θo

r + ωNt
constant excitation voltage Vf .
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The phasor approximation explained with an example The phasor approximation

The phasor approximation

. . . is a simplification of the power system model regarding the network and the
components connected to it. It relies on the following :

Assumption 1. In the network the voltage and current evolutions take on the form:

v(t) =
√

2 V (t) cos(ωNt + θ(t)) (1)

i(t) =
√

2 I (t) cos(ωNt + ψ(t)) (2)

where the effective values and the phase angles vary with time.

Eqs. (1, 2) can be rewritten as:

v(t) =
√

2 re
[
V (t)e jθ(t)e jωN t

]
=
√

2 re
[
(vx (t) + j vy (t)) e jωN t

]
(3)

i(t) =
√

2 re
[
I (t)e jψ(t)e jωN t

]
=
√

2 re
[
(ix (t) + j iy (t)) e jωN t

]
(4)
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The phasor approximation explained with an example Introducing the time-varying phasors

Introducing the time-varying phasors

Reminder. Consider the sinusoidal evolution :

va(t) =
√

2V cos(ωNt + θ) =
√

2 re
[
V e j(ωN t+θ)

]
=
√

2 re
[
V e jθ e jωN t

]
The phasor V e jθ has two interpretations :

1 it coincides with the rotating vector V e j(ωN t+θ) at time t = 0

2 it is, at any time, the rotating vector V e j(ωN t+θ) expressed with respect to
(x , y) axes rotating at the angular speed ωN .

re

im

x

y

ωN t

θ

ejωN t

V ej(ωN t+θ)
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The phasor approximation explained with an example Introducing the time-varying phasors

Similarly (and by extension) the phasor :

V (t)e jθ(t) = vx (t) + j vy (t)

is the rotating vector :

V (t)e jθ(t)e jωN t = (vx (t) + j vy (t)) e jωN t

expressed with respect to (x , y) axes rotating at the angular speed ωN .

The corresponding phasor diagram :

re

im

x

y

ωN t

θ(t)

V (t)ej(ωN t+θ(t))

vx(t)
vy(t)

Remark. For the voltage source ea(t) =
√

2E cos(ωNt + θe), the phasor is
constant:

Ēa = E e jθe = ex + jey
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The phasor approximation explained with an example Transformation of the network equations

Transformation of the network equations

The network equation relative to phase a is:

va − ea = Re ia + Le
dia
dt

Replacing the voltage and the current by their expressions (3, 4) :

√
2 re

[
(vx (t) + j vy (t)) e jωN t

]
−
√

2 re
[
(ex + j ey ) e jωN t

]
= Re

√
2 re

[
(ix (t) + j iy (t)) e jωN t

]
+ Le

d

dt

{√
2 re

[
(ix (t) + j iy (t)) e jωN t

]}
Passing to complex numbers and dividing by

√
2:

(vx (t) + j vy (t)) e jωN t − (ex + j ey ) e jωN t = Re(ix (t) + j iy (t)) e jωN t

+Le
d

dt

{
(ix (t) + j iy (t)) e jωN t

}
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The phasor approximation explained with an example Transformation of the network equations

Developing the derivative :

(vx (t) + j vy (t)) e jωN t − (ex + j ey ) e jωN t = Re(ix (t) + j iy (t)) e jωN t

+Le
d

dt
(ix (t) + j iy (t))e jωN t + jωNLe(ix (t) + j iy (t))e jωN t

Dividing by e jωN t :

vx (t) + j vy (t)− ex − j ey = Re(ix (t) + j iy (t))

+Le
d

dt
(ix (t) + j iy (t)) + jωNLe(ix (t) + j iy (t))

Decomposing into real and imaginary components:

vx (t)− ex = Re ix (t) +
d

dt
Le ix (t)− ωNLe iy (t) (5)

vy (t)− ey = Re iy (t) +
d

dt
Le iy (t) + ωNLe ix (t) (6)
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The phasor approximation explained with an example Transformation of the network equations

Assumption 2a. The terms
d

dt
Le ix (t) and

d

dt
Le iy (t), i.e. the rate of change of

fluxes in network inductances, are neglected. This leads to neglecting some
short-lasting components of the current.

Eqs. (5, 6) become:

vx (t)− ex = Re ix (t)− Xe iy (t) (7)

vy (t)− ey = Re iy (t) + Xe ix (t) (8)

where Xe = ωNLe is the reactance of the line.

Let us define the time-varying phasors referred to the (x , y) axes:

V̄ (t) = vx (t) + j vy (t) Ī (t) = ix (t) + j iy (t)

Eqs. (7, 8) can be recombined into the single complex relation:

V̄ (t)− Ē = Re Ī (t) + jXe Ī (t)

which is the equation of the (Re , Le) circuit in sinusoidal steady state, but with
the time-varying phasors V̄ and Ī .
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The phasor approximation explained with an example Transformation of the network equations

Assumption 2b. The same simplification is made in the machine stator model,
i.e. the transformer voltages are neglected.

The Park equations of the stator become:

vd = −Raid − ψq −
�
��dψd

dt
(9)

vq = −Raiq + ψd −
�
��dψq

dt
(10)

The other machine equations are unchanged:

ψd = Ldd id + Ldf if (11)

ψq = Lqq iq + Lqq1iq1 (12)

ψf = Lff if + Ldf id (13)

ψq1 = Lqq1iq + Lq1q1iq1 (14)

1

ωN

d

dt
ψf = Vf − Rf if (15)

1

ωN

d

dt
ψq1 = −Rq1iq1 (16)
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The phasor approximation explained with an example Transformation of the network equations

Assumption 3. The operation is three-phase balanced.

Thus, the voltages and currents take on the form:

va(t) =
√

2V (t) cos(ωNt + θ(t)) ia(t) =
√

2I (t) cos(ωNt + ψ(t))

vb(t) =
√

2V (t) cos(ωNt + θ(t)− 2π

3
) ib(t) =

√
2I (t) cos(ωNt + ψ(t)− 2π

3
)

vc (t) =
√

2V (t) cos(ωNt + θ(t)− 4π

3
) ic (t) =

√
2I (t) cos(ωNt + ψ(t)− 4π

3
)

Applying the Park transformation and passing in per unit: vd

vq

vo

 =
1√
3VB

P

 va

vb

vc

 =

 V (t) cos(θo
r − θ(t))

V (t) sin(θo
r − θ(t))

0

 (17)

 id
iq
io

 =
1√
3IB
P

 ia
ib
ic

 =

 I (t) cos(θo
r − ψ(t))

I (t) sin(θo
r − ψ(t))

0

 (18)

These results are the same as for the machine in steady-state operation, except
that V , I , θ and ψ vary with time.
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The phasor approximation explained with an example Phasors in the (q, d) and (x, y) reference frames

Phasors in the (q, d) and (x , y) reference frames

x

y

ωN t

θ

V ej(ωN t+θ)

vq

vd

qd

θor + ωN t

As for the machine in steady state, (vd , vq) are the projections on the (d ,q) axes
of the rotating vector Ve jωN t+θ :

projection on the q axis:

V cos
[
ωNt + θ − (θo

r + ωNt −
π

2
)
]

= Va cos(θ − θo
r +

π

2
) = V sin(θo

r − θ) = vq

projection on the d axis:

V sin
[
ωNt + θ − (θo

r + ωNt −
π

2
)
]

= Va sin(θ− θo
r +

π

2
) = Va cos(θo

r − θ) = vd

Similarly for the current phasor.
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The phasor approximation explained with an example Phasors in the (q, d) and (x, y) reference frames

Relation between vd , vq and vx , vy ?

vd = V cos(θo
r − θ) = V (cos θo

r cos θ + sin θo
r sin θ)

= cos θo
r V cos θ + sin θo

r V sin θ = cos θo
r vx + sin θo

r vy (19)

vq = V sin(θo
r − θ) = V (sin θo

r cos θ − cos θo
r sin θ)

= sin θo
r V cos θ − cos θo

r V sin θ = sin θo
r vx − cos θo

r vy (20)

Similarly for the currents:

id = cos θo
r ix + sin θo

r iy (21)

iq = sin θo
r ix − cos θo

r iy (22)

12 / 23



The phasor approximation explained with an example The whole (simplified) model

The whole (simplified) model

rotor windings :
1

ωN

dψf

dt
= vf − Rf if

1

ωN

dψq1

dt
= −Rq1iq1

flux-current : 0 = ψd − Ldd id − Ldf if

0 = ψq − Lqq iq − Lqq1iq1

0 = ψf − Lff if − Ldf id

0 = ψq1 − Lqq1iq − Lq1q1iq1

stator Park : 0 = vd + Raid + ψq

0 = vq + Raiq − ψd

network : 0 = vx − ex − Re ix + Xe iy

0 = vy − ey − Re iy − Xe ix

(d , q)↔ (x , y) : 0 = vd − cos θo
r vx − sin θo

r vy

0 = vq − sin θo
r vx + cos θo

r vy

0 = id − cos θo
r ix − sin θo

r iy

0 = iq − sin θo
r ix + cos θo

r iy
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The phasor approximation explained with an example Numerical example

Numerical example

Same data as in the lecture “Behaviour of synchronous machine during a
short-circuit”
specified from reactances and time constants

Network and machine data

fN = 50 Hz
Xe = Le = 0.20 pu Re = 0.01 pu
Ra = 0.005 pu
Xd = Ldd = 2.4 pu Xq = Lqq = 2.4 pu
X` = L` = Ldd − Ldf = Lqq − Lqq1 = 0.2 pu
X ′

d = L′d = 0.4 pu X ′′
q = L′′q = 0.25 pu

T ′
do = Lff /Rf = 7.0 s T ′′

qo = Lqq1/Rq1 = 0.3 s
(Loo not needed)

Initial operating point

P = 0.5 pu
Q = 0.1 pu
V̄a = 1.000 pu ∠0
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The phasor approximation explained with an example Numerical example

Simulation results

A MATLAB script to simulate this system is available in phasormode.m and
matA.m.

A three-phase short-circuit is simulated by setting E to zero at t = 0.05 s.

The following plots should be compared with the corresponding curves in the
lecture “Behaviour of synchronous machine during a short-circuit”

15 / 23



The phasor approximation explained with an example Numerical example

effective (RMS) value of the phase voltage :

V =
√
v2

x + v2
y =

√
v2

d + v2
q

note that vx , vy , vd and vq are constant in steady state, although the
corresponding voltage va(t) evolves sinusoidally
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The phasor approximation explained with an example Numerical example

phase angle of the voltage of phase a:

θ = atan (
vy

vx
)

both θ and V evolve with time
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The phasor approximation explained with an example Numerical example

effective (RMS) value of the phase current:

I =
√
i2x + i2y =

√
i2d + i2q
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The phasor approximation explained with an example Numerical example

the simulation in phasor mode renders the aperiodic evolution of each flux,
but not its oscillatory component (stemming from the magnetic field HDC )
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The phasor approximation explained with an example Numerical example

similar remark for the currents in rotor windings
the various curves show that the variables evolve much more smoothly than
in the electromagnetic transient simulation
hence, a much larger time step can be used in numerical simulation
(e.g. 1/4 to 1 cycle at fundamental frequency fN )
simulations can be run over much longer times (e.g. up to 10-15 minutes)
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The phasor approximation explained with an example Numerical example

the current ia(t) has been “reconstructed” from its components ix and iy

note, however, that the simulation in phasor mode is not used to obtain the
“full wave” evolution of voltages or currents

instead, it provides the evolution of the associated phasors
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The phasor approximation explained with an example Numerical example

the currents ib(t) and ic (t) have been “reconstructed” from ix and iy with a
phase shift of ±2π/3 from one phase to the other

due to the terms neglected in the electromagnetic transient (“full”) model:

the simulation in phasor mode neglects the aperiodic components of currents
the currents undergo “non-physical” discontinuities
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The phasor approximation explained with an example Numerical example

due to the terms neglected in the electromagnetic transient (“full”) model,
the fluxes in the d and q windings undergo “non-physical” discontinuities,
as for the stator currents
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