

ELEC0047 - Power system dynamics, control and stability

The phasor approximation explained with an example

Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct

October 2019

System modelling

Refer to lecture "Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients)".

Network :

- resistance R_e and inductance L_e in each phase
- no magnetic coupling between phases, for simplicity.

$$e_a = \sqrt{2}E\cos(\omega_N t + \theta_e)$$
 $e_b = \sqrt{2}E\cos(\omega_N t + \theta_e - \frac{2\pi}{3})$ $e_c = \dots$

Machine :

- field winding f in the d axis
- one damper winding q1 in the q axis
- constant rotor speed : $\theta_r = \theta_r^o + \omega_N t$
- constant excitation voltage V_f .

The phasor approximation

 \ldots is a simplification of the power system model regarding the network and the components connected to it. It relies on the following :

Assumption 1. In the network the voltage and current evolutions take on the form:

$$V(t) = \sqrt{2} V(t) \cos(\omega_N t + \theta(t))$$
(1)

$$i(t) = \sqrt{2} I(t) \cos(\omega_N t + \psi(t))$$
(2)

where the effective values and the phase angles vary with time.

Eqs. (1, 2) can be rewritten as:

$$v(t) = \sqrt{2} \operatorname{re} \left[V(t) e^{j\theta(t)} e^{j\omega_N t} \right] = \sqrt{2} \operatorname{re} \left[\left(v_x(t) + j v_y(t) \right) e^{j\omega_N t} \right]$$
(3)

$$i(t) = \sqrt{2} \operatorname{re} \left[I(t) e^{j\psi(t)} e^{j\omega_N t} \right] = \sqrt{2} \operatorname{re} \left[(i_x(t) + j i_y(t)) e^{j\omega_N t} \right]$$
(4)

Introducing the time-varying phasors

Reminder. Consider the sinusoidal evolution :

$$v_{a}(t) = \sqrt{2}V\cos(\omega_{N}t + \theta) = \sqrt{2} re\left[V e^{j(\omega_{N}t+\theta)}
ight] = \sqrt{2} re\left[V e^{j\theta} e^{j\omega_{N}t}
ight]$$

The phasor $V e^{j\theta}$ has two interpretations :

- () it coincides with the rotating vector $V e^{j(\omega_N t + \theta)}$ at time t = 0
- **3** it is, at any time, the rotating vector $V e^{j(\omega_N t + \theta)}$ expressed with respect to (x, y) axes rotating at the angular speed ω_N .

Similarly (and by extension) the phasor :

$$V(t)e^{j\theta(t)} = v_x(t) + j v_y(t)$$

is the rotating vector :

$$V(t)e^{j heta(t)}e^{j\omega_N t} = (v_x(t)+j\,v_y(t))\,e^{j\omega_N t}$$

expressed with respect to (x, y) axes rotating at the angular speed ω_N .

The corresponding phasor diagram :

<u>Remark</u>. For the voltage source $e_a(t) = \sqrt{2}E\cos(\omega_N t + \theta_e)$, the phasor is constant:

$$ar{\mathcal{E}}_{\mathsf{a}} = \mathcal{E} \; e^{j heta_{e}} = e_{\mathsf{x}} + j e_{\mathsf{y}}$$

Transformation of the network equations

The network equation relative to phase a is:

$$v_a - e_a = R_e i_a + L_e rac{di_a}{dt}$$

Replacing the voltage and the current by their expressions (3, 4) :

$$\sqrt{2} \operatorname{re}\left[\left(v_{x}(t)+j v_{y}(t)\right) e^{j\omega_{N}t}\right] - \sqrt{2} \operatorname{re}\left[\left(e_{x}+j e_{y}\right) e^{j\omega_{N}t}\right]$$
$$= R_{e}\sqrt{2} \operatorname{re}\left[\left(i_{x}(t)+j i_{y}(t)\right) e^{j\omega_{N}t}\right] + L_{e}\frac{d}{dt}\left\{\sqrt{2} \operatorname{re}\left[\left(i_{x}(t)+j i_{y}(t)\right) e^{j\omega_{N}t}\right]\right\}$$

Passing to complex numbers and dividing by $\sqrt{2}$:

$$(v_x(t) + j v_y(t)) e^{j\omega_N t} - (e_x + j e_y) e^{j\omega_N t} = R_e(i_x(t) + j i_y(t)) e^{j\omega_N t} \\ + L_e \frac{d}{dt} \left\{ (i_x(t) + j i_y(t)) e^{j\omega_N t} \right\}$$

Developing the derivative :

$$(v_x(t) + j v_y(t)) e^{j\omega_N t} - (e_x + j e_y) e^{j\omega_N t} = R_e(i_x(t) + j i_y(t)) e^{j\omega_N t} + L_e \frac{d}{dt}(i_x(t) + j i_y(t)) e^{j\omega_N t} + j\omega_N L_e(i_x(t) + j i_y(t)) e^{j\omega_N t}$$

Dividing by $e^{j\omega_N t}$:

$$v_{x}(t) + j v_{y}(t) - e_{x} - j e_{y} = R_{e}(i_{x}(t) + j i_{y}(t)) + L_{e} \frac{d}{dt}(i_{x}(t) + j i_{y}(t)) + j\omega_{N}L_{e}(i_{x}(t) + j i_{y}(t))$$

Decomposing into real and imaginary components:

$$v_x(t) - e_x = R_e i_x(t) + \frac{d}{dt} L_e i_x(t) - \omega_N L_e i_y(t)$$
(5)

$$v_y(t) - e_y = R_e i_y(t) + \frac{d}{dt} L_e i_y(t) + \omega_N L_e i_x(t)$$
(6)

Assumption 2a. The terms $\frac{d}{dt}L_e i_x(t)$ and $\frac{d}{dt}L_e i_y(t)$, i.e. the rate of change of fluxes in network inductances, are neglected. This leads to neglecting some short-lasting components of the current.

Eqs. (5, 6) become:

$$v_{x}(t) - e_{x} = R_{e}i_{x}(t) - X_{e}i_{y}(t)$$
(7)
$$v_{y}(t) - e_{y} = R_{e}i_{y}(t) + X_{e}i_{x}(t)$$
(8)

where $X_e = \omega_N L_e$ is the reactance of the line.

Let us define the time-varying phasors referred to the (x, y) axes:

$$ar{V}(t) = v_{\scriptscriptstyle X}(t) + j \, v_{\scriptscriptstyle Y}(t) \qquad \quad ar{I}(t) = i_{\scriptscriptstyle X}(t) + j \, i_{\scriptscriptstyle Y}(t)$$

Eqs. (7, 8) can be recombined into the single complex relation:

$$ar{V}(t) - ar{E} = R_e ar{I}(t) + j X_e ar{I}(t)$$

which is the equation of the (R_e, L_e) circuit in sinusoidal steady state, but with the time-varying phasors \overline{V} and \overline{I} .

Assumption 2b. The same simplification is made in the machine stator model, i.e. the transformer voltages are neglected.

The Park equations of the stator become:

$$v_{d} = -R_{a}i_{d} - \psi_{q} - \frac{d\psi_{d}}{dt}$$
(9)
$$v_{q} = -R_{a}i_{q} + \psi_{d} - \frac{d\psi_{d}}{dt}$$
(10)

The other machine equations are unchanged:

1

$$\psi_d = L_{dd} i_d + L_{df} i_f \tag{11}$$

$$\psi_q = L_{qq}i_q + L_{qq1}i_{q1} \tag{12}$$

$$\psi_f = L_{ff}i_f + L_{df}i_d \tag{13}$$

$$\psi_{q1} = L_{qq1}i_q + L_{q1q1}i_{q1} \tag{14}$$

$$\frac{1}{\omega_N} \frac{d}{dt} \psi_f = V_f - R_f i_f \tag{15}$$

$$\frac{1}{\omega_N}\frac{d}{dt}\psi_{q1} = -R_{q1}i_{q1} \tag{16}$$

Assumption 3. The operation is three-phase balanced.

Thus, the voltages and currents take on the form:

$$v_{a}(t) = \sqrt{2}V(t)\cos(\omega_{N}t + \theta(t)) \qquad i_{a}(t) = \sqrt{2}I(t)\cos(\omega_{N}t + \psi(t))$$
$$v_{b}(t) = \sqrt{2}V(t)\cos(\omega_{N}t + \theta(t) - \frac{2\pi}{3}) \qquad i_{b}(t) = \sqrt{2}I(t)\cos(\omega_{N}t + \psi(t) - \frac{2\pi}{3})$$
$$v_{c}(t) = \sqrt{2}V(t)\cos(\omega_{N}t + \theta(t) - \frac{4\pi}{3}) \qquad i_{c}(t) = \sqrt{2}I(t)\cos(\omega_{N}t + \psi(t) - \frac{4\pi}{3})$$

Applying the Park transformation and passing in per unit:

$$\begin{bmatrix} v_d \\ v_q \\ v_o \end{bmatrix} = \frac{1}{\sqrt{3}V_B} \mathcal{P} \begin{bmatrix} v_a \\ v_b \\ v_c \end{bmatrix} = \begin{bmatrix} V(t) \cos(\theta_r^o - \theta(t)) \\ V(t) \sin(\theta_r^o - \theta(t)) \\ 0 \end{bmatrix}$$
(17)
$$\begin{bmatrix} i_d \\ i_q \\ i_o \end{bmatrix} = \frac{1}{\sqrt{3}I_B} \mathcal{P} \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} = \begin{bmatrix} I(t) \cos(\theta_r^o - \psi(t)) \\ I(t) \sin(\theta_r^o - \psi(t)) \\ 0 \end{bmatrix}$$
(18)

These results are the same as for the machine in steady-state operation, except that V, I, θ and ψ vary with time.

The phasor approximation explained with an example Phasors in the (q, d) and (x, y) reference frames

Phasors in the (q, d) and (x, y) reference frames

As for the machine in steady state, (v_d, v_q) are the projections on the (d,q) axes of the rotating vector $Ve^{j\omega_N t+\theta}$:

• projection on the q axis:

$$V\cos\left[\omega_{N}t+\theta-(\theta_{r}^{o}+\omega_{N}t-\frac{\pi}{2})\right]=V_{a}\cos(\theta-\theta_{r}^{o}+\frac{\pi}{2})=V\sin(\theta_{r}^{o}-\theta)=v_{q}$$

• projection on the *d* axis:

$$V\sin\left[\omega_{N}t+\theta-(\theta_{r}^{o}+\omega_{N}t-\frac{\pi}{2})\right]=V_{a}\sin(\theta-\theta_{r}^{o}+\frac{\pi}{2})=V_{a}\cos(\theta_{r}^{o}-\theta)=v_{d}$$

Similarly for the current phasor.

Relation between v_d , v_q and v_x , v_y ?

$$v_{q} = V \sin(\theta_{r}^{o} - \theta) = V(\sin \theta_{r}^{o} \cos \theta - \cos \theta_{r}^{o} \sin \theta)$$

$$= \sin \theta_{r}^{o} V \cos \theta - \cos \theta_{r}^{o} V \sin \theta = \sin \theta_{r}^{o} v_{x} - \cos \theta_{r}^{o} v_{y}$$
(20)

Similarly for the currents:

$$i_d = \cos \theta_r^o i_x + \sin \theta_r^o i_y$$
(21)

$$i_q = \sin \theta_r^o i_x - \cos \theta_r^o i_y$$
(22)

The phasor approximation explained with an example

The whole (simplified) model

$$\begin{array}{rcl} \text{rotor windings}: & \frac{1}{\omega_N} \frac{d\psi_f}{dt} &= v_f - R_f i_f \\ & \frac{1}{\omega_N} \frac{d\psi_{q1}}{dt} &= -R_{q1} i_{q1} \\ & \text{flux-current}: & 0 &= \psi_d - L_{dd} i_d - L_{df} i_f \\ & 0 &= \psi_q - L_{qq} i_q - L_{qq1} i_{q1} \\ & 0 &= \psi_f - L_{ff} i_f - L_{df} i_d \\ & 0 &= \psi_{q1} - L_{qq1} i_q - L_{q1q1} i_{q1} \\ & \text{stator Park}: & 0 &= v_d + R_a i_d + \psi_q \\ & 0 &= v_q + R_a i_q - \psi_d \\ & \text{network}: & 0 &= v_x - e_x - R_e i_x + X_e i_y \\ & 0 &= v_y - e_y - R_e i_y - X_e i_x \\ & (d,q) \leftrightarrow (x,y): & 0 &= v_d - \cos\theta_r^\circ v_x - \sin\theta_r^\circ v_y \\ & 0 &= i_d - \cos\theta_r^\circ i_x - \sin\theta_r^\circ i_y \\ & 0 &= i_q - \sin\theta_r^\circ i_x + \cos\theta_r^\circ i_y \end{array}$$

13 / 23

Numerical example

- Same data as in the lecture "Behaviour of synchronous machine during a short-circuit"
- specified from reactances and time constants

Network and machine data

```
 \begin{array}{ll} f_N = 50 \; \text{Hz} \\ X_e = L_e = 0.20 \; \text{pu} \\ Ra = 0.005 \; \text{pu} \\ X_d = L_{dd} = 2.4 \; \text{pu} \\ X_\ell = L_\ell = L_{dd} - L_{df} = L_{qq} - L_{qq1} = 0.2 \; \text{pu} \\ X_d' = L_d' = 0.4 \; \text{pu} \\ X_d' = L_d' = 0.4 \; \text{pu} \\ T_{do}' = L_{ff}'/R_f = 7.0 \; \text{s} \\ (L_{oo} \; \text{not needed}) \end{array}
```

Initial operating point

P=0.5 pu Q=0.1 pu $V_a=1.000$ pu $\angle 0$

Simulation results

A MATLAB script to simulate this system is available in phasormode.m and matA.m.

A three-phase short-circuit is simulated by setting *E* to zero at t = 0.05 s.

The following plots should be compared with the corresponding curves in the lecture "Behaviour of synchronous machine during a short-circuit"

• effective (RMS) value of the phase voltage :

$$V = \sqrt{v_x^2 + v_y^2} = \sqrt{v_d^2 + v_q^2}$$

note that v_x, v_y, v_d and v_q are constant in steady state, although the corresponding voltage v_a(t) evolves sinusoidally

• phase angle of the voltage of phase a:

$$\theta = atan\left(rac{v_y}{v_x}
ight)$$

• both θ and V evolve with time

• effective (RMS) value of the phase current:

$$I = \sqrt{i_x^2 + i_y^2} = \sqrt{i_d^2 + i_q^2}$$

• the simulation in phasor mode renders the aperiodic evolution of each flux, but not its oscillatory component (stemming from the magnetic field H_{DC})

- similar remark for the currents in rotor windings
- the various curves show that the variables evolve much more smoothly than in the electromagnetic transient simulation
- hence, a much larger time step can be used in numerical simulation (e.g. 1/4 to 1 cycle at fundamental frequency f_N)
- simulations can be run over much longer times (e.g. up to 10-15 minutes)

• the current $i_a(t)$ has been "reconstructed" from its components i_x and i_y

- note, however, that the simulation in phasor mode is not used to obtain the "full wave" evolution of voltages or currents
- instead, it provides the evolution of the associated phasors

- the currents $i_b(t)$ and $i_c(t)$ have been "reconstructed" from i_x and i_y with a phase shift of $\pm 2\pi/3$ from one phase to the other
- due to the terms neglected in the electromagnetic transient ("full") model:
 - the simulation in phasor mode neglects the aperiodic components of currents
 - the currents undergo "non-physical" discontinuities

• due to the terms neglected in the electromagnetic transient ("full") model, the fluxes in the d and q windings undergo "non-physical" discontinuities, as for the stator currents