ELEC0047 - Power system dynamics, control and stability

The phasor approximation explained with an example

Thierry Van Cutsem
t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~ vct

October 2019

System modelling

Refer to lecture "Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients)".

Network:

- resistance R_{e} and inductance L_{e} in each phase
- no magnetic coupling between phases, for simplicity.

$$
e_{a}=\sqrt{2} E \cos \left(\omega_{N} t+\theta_{e}\right) \quad e_{b}=\sqrt{2} E \cos \left(\omega_{N} t+\theta_{e}-\frac{2 \pi}{3}\right) \quad e_{c}=\ldots
$$

Machine :

- field winding f in the d axis
- one damper winding $q 1$ in the q axis
- constant rotor speed : $\theta_{r}=\theta_{r}^{o}+\omega_{N} t$
- constant excitation voltage V_{f}.

The phasor approximation

... is a simplification of the power system model regarding the network and the components connected to it. It relies on the following :

Assumption 1. In the network the voltage and current evolutions take on the form:

$$
\begin{align*}
v(t) & =\sqrt{2} V(t) \cos \left(\omega_{N} t+\theta(t)\right) \tag{1}\\
i(t) & =\sqrt{2} I(t) \cos \left(\omega_{N} t+\psi(t)\right) \tag{2}
\end{align*}
$$

where the effective values and the phase angles vary with time.

Eqs. $(1,2)$ can be rewritten as:

$$
\begin{align*}
v(t) & =\sqrt{2} r e\left[V(t) e^{j \theta(t)} e^{j \omega_{N} t}\right]=\sqrt{2} r e\left[\left(v_{x}(t)+j v_{y}(t)\right) e^{j \omega_{N} t}\right] \tag{3}\\
i(t) & =\sqrt{2} r e\left[l(t) e^{j \psi(t)} e^{j \omega_{N} t}\right]=\sqrt{2} r e\left[\left(i_{x}(t)+j i_{y}(t)\right) e^{j \omega_{N} t}\right] \tag{4}
\end{align*}
$$

Introducing the time-varying phasors

Reminder. Consider the sinusoidal evolution:

$$
v_{a}(t)=\sqrt{2} V \cos \left(\omega_{N} t+\theta\right)=\sqrt{2} r e\left[V e^{j\left(\omega_{N} t+\theta\right)}\right]=\sqrt{2} r e\left[V e^{j \theta} e^{j \omega_{N} t}\right]
$$

The phasor $V e^{j \theta}$ has two interpretations :
(1) it coincides with the rotating vector $V e^{j\left(\omega_{N} t+\theta\right)}$ at time $t=0$
(2) it is, at any time, the rotating vector $V e^{j\left(\omega_{N} t+\theta\right)}$ expressed with respect to (x, y) axes rotating at the angular speed ω_{N}.

Similarly (and by extension) the phasor :

$$
V(t) e^{j \theta(t)}=v_{x}(t)+j v_{y}(t)
$$

is the rotating vector :

$$
V(t) e^{j \theta(t)} e^{j \omega_{N} t}=\left(v_{x}(t)+j v_{y}(t)\right) e^{j \omega_{N} t}
$$

expressed with respect to (x, y) axes rotating at the angular speed ω_{N}.
The corresponding phasor diagram :

Remark. For the voltage source $e_{\mathrm{a}}(t)=\sqrt{2} E \cos \left(\omega_{N} t+\theta_{e}\right)$, the phasor is constant:

$$
\bar{E}_{a}=E e^{j \theta_{e}}=e_{x}+j e_{y}
$$

Transformation of the network equations

The network equation relative to phase a is:

$$
v_{a}-e_{a}=R_{e} i_{a}+L_{e} \frac{d i_{a}}{d t}
$$

Replacing the voltage and the current by their expressions $(3,4)$:

$$
\begin{aligned}
& \sqrt{2} r e\left[\left(v_{x}(t)+j v_{y}(t)\right) e^{j \omega_{N} t}\right]-\sqrt{2} r e\left[\left(e_{x}+j e_{y}\right) e^{j \omega_{N} t}\right] \\
& =R_{e} \sqrt{2} r e\left[\left(i_{x}(t)+j i_{y}(t)\right) e^{j \omega_{N} t}\right]+L_{e} \frac{d}{d t}\left\{\sqrt{2} r e\left[\left(i_{x}(t)+j i_{y}(t)\right) e^{j \omega_{N} t}\right]\right\}
\end{aligned}
$$

Passing to complex numbers and dividing by $\sqrt{2}$:

$$
\begin{aligned}
& \left(v_{x}(t)+j v_{y}(t)\right) e^{j \omega_{N} t}-\left(e_{x}+j e_{y}\right) e^{j \omega_{N} t}=R_{e}\left(i_{x}(t)+j i_{y}(t)\right) e^{j \omega_{N} t} \\
& \quad+L_{e} \frac{d}{d t}\left\{\left(i_{x}(t)+j i_{y}(t)\right) e^{j \omega_{N} t}\right\}
\end{aligned}
$$

Developing the derivative :

$$
\begin{gathered}
\left(v_{x}(t)+j v_{y}(t)\right) e^{j \omega_{N} t}-\left(e_{x}+j e_{y}\right) e^{j \omega_{N} t}=R_{e}\left(i_{x}(t)+j i_{y}(t)\right) e^{j \omega_{N} t} \\
\quad+L_{e} \frac{d}{d t}\left(i_{x}(t)+j i_{y}(t)\right) e^{j \omega_{N} t}+j \omega_{N} L_{e}\left(i_{x}(t)+j i_{y}(t)\right) e^{j \omega_{N} t}
\end{gathered}
$$

Dividing by $e^{j \omega_{N} t}$:

$$
\begin{aligned}
& v_{x}(t)+j v_{y}(t)-e_{x}-j e_{y}=R_{e}\left(i_{x}(t)+j i_{y}(t)\right) \\
& \quad+L_{e} \frac{d}{d t}\left(i_{x}(t)+j i_{y}(t)\right)+j \omega_{N} L_{e}\left(i_{x}(t)+j i_{y}(t)\right)
\end{aligned}
$$

Decomposing into real and imaginary components:

$$
\begin{align*}
& v_{x}(t)-e_{x}=R_{e} i_{x}(t)+\frac{d}{d t} L_{e} i_{x}(t)-\omega_{N} L_{e} i_{y}(t) \tag{5}\\
& v_{y}(t)-e_{y}=R_{e} i_{y}(t)+\frac{d}{d t} L_{e} i_{y}(t)+\omega_{N} L_{e} i_{x}(t) \tag{6}
\end{align*}
$$

Assumption 2a. The terms $\frac{d}{d t} L_{e} i_{x}(t)$ and $\frac{d}{d t} L_{e} i_{y}(t)$, i.e. the rate of change of fluxes in network inductances, are neglected. This leads to neglecting some short-lasting components of the current.

Eqs. $(5,6)$ become:

$$
\begin{align*}
& v_{x}(t)-e_{x}=R_{e} i_{x}(t)-X_{e} i_{y}(t) \tag{7}\\
& v_{y}(t)-e_{y}=R_{e} i_{y}(t)+X_{e} i_{x}(t) \tag{8}
\end{align*}
$$

where $X_{e}=\omega_{N} L_{e}$ is the reactance of the line.
Let us define the time-varying phasors referred to the (x, y) axes:

$$
\bar{V}(t)=v_{x}(t)+j v_{y}(t) \quad \bar{l}(t)=i_{x}(t)+j i_{y}(t)
$$

Eqs. $(7,8)$ can be recombined into the single complex relation:

$$
\bar{V}(t)-\bar{E}=R_{e} \bar{I}(t)+j X_{e} \bar{I}(t)
$$

which is the equation of the $\left(R_{e}, L_{e}\right)$ circuit in sinusoidal steady state, but with the time-varying phasors \bar{V} and \bar{l}.

Assumption 2b. The same simplification is made in the machine stator model, i.e. the transformer voltages are neglected.

The Park equations of the stator become:

$$
\begin{align*}
& v_{d}=-R_{a} i_{d}-\psi_{q}-\frac{d \psi / d}{d t} \tag{9}\\
& v_{q}=-R_{a} i_{q}+\psi_{d}-\frac{d \psi / q}{d t} \tag{10}
\end{align*}
$$

The other machine equations are unchanged:

$$
\begin{align*}
\psi_{d} & =L_{d d} i_{d}+L_{d f} i_{f} \tag{11}\\
\psi_{q} & =L_{q q} i_{q}+L_{q q 1} i_{q 1} \tag{12}\\
\psi_{f} & =L_{f f} i_{f}+L_{d f} i_{d} \tag{13}\\
\psi_{q 1} & =L_{q q 1} i_{q}+L_{q 1 q 1} i_{q 1} \tag{14}\\
\frac{1}{\omega_{N}} \frac{d}{d t} \psi_{f} & =V_{f}-R_{f} i_{f} \tag{15}\\
\frac{1}{\omega_{N}} \frac{d}{d t} \psi_{q 1} & =-R_{q 1} i_{q 1} \tag{16}
\end{align*}
$$

Assumption 3. The operation is three-phase balanced.

Thus, the voltages and currents take on the form:

$$
\begin{array}{cl}
v_{a}(t)=\sqrt{2} V(t) \cos \left(\omega_{N} t+\theta(t)\right) & i_{a}(t)=\sqrt{2} I(t) \cos \left(\omega_{N} t+\psi(t)\right) \\
v_{b}(t)=\sqrt{2} V(t) \cos \left(\omega_{N} t+\theta(t)-\frac{2 \pi}{3}\right) & i_{b}(t)=\sqrt{2} I(t) \cos \left(\omega_{N} t+\psi(t)-\frac{2 \pi}{3}\right) \\
v_{c}(t)=\sqrt{2} V(t) \cos \left(\omega_{N} t+\theta(t)-\frac{4 \pi}{3}\right) & i_{c}(t)=\sqrt{2} I(t) \cos \left(\omega_{N} t+\psi(t)-\frac{4 \pi}{3}\right)
\end{array}
$$

Applying the Park transformation and passing in per unit:

$$
\begin{align*}
& {\left[\begin{array}{l}
v_{d} \\
v_{q} \\
v_{o}
\end{array}\right]=\frac{1}{\sqrt{3} V_{B}} \mathcal{P}\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right]=\left[\begin{array}{c}
V(t) \cos \left(\theta_{r}^{o}-\theta(t)\right) \\
V(t) \sin \left(\theta_{r}^{o}-\theta(t)\right) \\
0
\end{array}\right]} \tag{17}\\
& {\left[\begin{array}{c}
i_{d} \\
i_{q} \\
i_{o}
\end{array}\right]=\frac{1}{\sqrt{3} I_{B}} \mathcal{P}\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]=\left[\begin{array}{c}
I(t) \cos \left(\theta_{r}^{o}-\psi(t)\right) \\
I(t) \sin \left(\theta_{r}^{o}-\psi(t)\right) \\
0
\end{array}\right]} \tag{18}
\end{align*}
$$

These results are the same as for the machine in steady-state operation, except that V, I, θ and ψ vary with time.

Phasors in the (q, d) and (x, y) reference frames

As for the machine in steady state, $\left(v_{d}, v_{q}\right)$ are the projections on the (d, q) axes of the rotating vector $V e^{j \omega_{N} t+\theta}$:

- projection on the q axis:

$$
V \cos \left[\omega_{N} t+\theta-\left(\theta_{r}^{\circ}+\omega_{N} t-\frac{\pi}{2}\right)\right]=V_{a} \cos \left(\theta-\theta_{r}^{\circ}+\frac{\pi}{2}\right)=V \sin \left(\theta_{r}^{\circ}-\theta\right)=v_{q}
$$

- projection on the d axis:

$$
V \sin \left[\omega_{N} t+\theta-\left(\theta_{r}^{\circ}+\omega_{N} t-\frac{\pi}{2}\right)\right]=V_{a} \sin \left(\theta-\theta_{r}^{\circ}+\frac{\pi}{2}\right)=V_{a} \cos \left(\theta_{r}^{\circ}-\theta\right)=v_{d}
$$

Similarly for the current phasor.

Relation between v_{d}, v_{q} and v_{x}, v_{y} ?

$$
\begin{align*}
v_{d} & =V \cos \left(\theta_{r}^{\circ}-\theta\right)=V\left(\cos \theta_{r}^{\circ} \cos \theta+\sin \theta_{r}^{\circ} \sin \theta\right) \\
& =\cos \theta_{r}^{\circ} V \cos \theta+\sin \theta_{r}^{\circ} V \sin \theta=\cos \theta_{r}^{\circ} v_{x}+\sin \theta_{r}^{\circ} v_{y} \tag{19}\\
v_{q} & =V \sin \left(\theta_{r}^{\circ}-\theta\right)=V\left(\sin \theta_{r}^{\circ} \cos \theta-\cos \theta_{r}^{\circ} \sin \theta\right) \\
& =\sin \theta_{r}^{\circ} V \cos \theta-\cos \theta_{r}^{\circ} V \sin \theta=\sin \theta_{r}^{\circ} v_{x}-\cos \theta_{r}^{\circ} v_{y} \tag{20}
\end{align*}
$$

Similarly for the currents:

$$
\begin{align*}
i_{d} & =\cos \theta_{r}^{o} i_{x}+\sin \theta_{r}^{o} i_{y} \tag{21}\\
i_{q} & =\sin \theta_{r}^{\circ} i_{x}-\cos \theta_{r}^{o} i_{y} \tag{22}
\end{align*}
$$

The whole (simplified) model

$$
\text { rotor windings : } \begin{aligned}
\frac{1}{\omega_{N}} \frac{d \psi_{f}}{d t} & =v_{f}-R_{f} i_{f} \\
\frac{1}{\omega_{N}} \frac{d \psi_{q 1}}{d t} & =-R_{q 1} i_{q 1} \\
\text { flux-current : } \quad 0 & =\psi_{d}-L_{d d} i_{d}-L_{d f} i_{f} \\
0 & =\psi_{q}-L_{q q} i_{q}-L_{q q 1} i_{q 1} \\
0 & =\psi_{f}-L_{f f} i_{f}-L_{d f} i_{d} \\
0 & =\psi_{q 1}-L_{q q 1} i_{q}-L_{q 1 q 1} i_{q 1} \\
\text { stator Park: } \quad 0 & =v_{d}+R_{a} i_{d}+\psi_{q} \\
\text { network: } \quad 0 & =v_{q}+R_{a} i_{q}-\psi_{d} \\
& =v_{x}-e_{x}-R_{e} i_{x}+X_{e} i_{y} \\
(d, q) \leftrightarrow(x, y): \quad 0 & =v_{y}-e_{y}-R_{e} i_{y}-X_{e} i_{x} \\
0 & =v_{d}-\cos \theta_{r}^{o} v_{x}-\sin \theta_{r}^{o} v_{y} \\
0 & =v_{q}-\sin \theta_{r}^{o} v_{x}+\cos \theta_{r}^{o} v_{y} \\
0 & =i_{d}-\cos \theta_{r}^{o} i_{x}-\sin \theta_{r}^{o} i_{y} \\
0 & =i_{q}-\sin \theta_{r}^{o} i_{x}+\cos \theta_{r}^{o} i_{y}
\end{aligned}
$$

Numerical example

- Same data as in the lecture "Behaviour of synchronous machine during a short-circuit"
- specified from reactances and time constants

Network and machine data

$f_{N}=50 \mathrm{~Hz}$
$X_{e}=L_{e}=0.20 \mathrm{pu} \quad R_{e}=0.01 \mathrm{pu}$
$R \mathrm{Ra}=0.005 \mathrm{pu}$
$X_{d}=L_{d d}=2.4 \mathrm{pu} \quad X_{q}=L_{q q}=2.4 \mathrm{pu}$
$X_{\ell}=L_{\ell}=L_{d d}-L_{d f}=L_{q q}-L_{q q 1}=0.2 \mathrm{pu}$
$X_{d}^{\prime}=L_{d}^{\prime}=0.4 \mathrm{pu} \quad X_{q}^{\prime \prime}=L_{q}^{\prime \prime}=0.25 \mathrm{pu}$
$T_{d o}^{\prime}=L_{f f} / R_{f}=7.0 \mathrm{~s} \quad T_{q o}^{\prime \prime}=L_{q q 1} / R_{q 1}=0.3 \mathrm{~s}$
($L_{o o}$ not needed)
Initial operating point
$P=0.5 \mathrm{pu}$
$Q=0.1 \mathrm{pu}$
$\bar{V}_{a}=1.000 \mathrm{pu} \angle 0$

Simulation results

A MATLAB script to simulate this system is available in phasormode.m and matA.m.

A three-phase short-circuit is simulated by setting E to zero at $t=0.05 \mathrm{~s}$.

The following plots should be compared with the corresponding curves in the lecture "Behaviour of synchronous machine during a short-circuit"

- effective (RMS) value of the phase voltage :

$$
V=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{v_{d}^{2}+v_{q}^{2}}
$$

- note that v_{x}, v_{y}, v_{d} and v_{q} are constant in steady state, although the corresponding voltage $v_{a}(t)$ evolves sinusoidally

- phase angle of the voltage of phase a:

$$
\theta=\operatorname{atan}\left(\frac{v_{y}}{v_{x}}\right)
$$

- both θ and V evolve with time

- effective (RMS) value of the phase current:

$$
I=\sqrt{i_{x}^{2}+i_{y}^{2}}=\sqrt{i_{d}^{2}+i_{q}^{2}}
$$

- the simulation in phasor mode renders the aperiodic evolution of each flux, but not its oscillatory component (stemming from the magnetic field $H_{D C}$)

- similar remark for the currents in rotor windings
- the various curves show that the variables evolve much more smoothly than in the electromagnetic transient simulation
- hence, a much larger time step can be used in numerical simulation (e.g. $1 / 4$ to 1 cycle at fundamental frequency f_{N})
- simulations can be run over much longer times (e.g. up to $10-15$ minutes)

- the current $i_{a}(t)$ has been "reconstructed" from its components i_{x} and i_{y}
- note, however, that the simulation in phasor mode is not used to obtain the "full wave" evolution of voltages or currents
- instead, it provides the evolution of the associated phasors

- the currents $i_{b}(t)$ and $i_{c}(t)$ have been "reconstructed" from i_{x} and i_{y} with a phase shift of $\pm 2 \pi / 3$ from one phase to the other
- due to the terms neglected in the electromagnetic transient ("full") model:
- the simulation in phasor mode neglects the aperiodic components of currents
- the currents undergo "non-physical" discontinuities

- due to the terms neglected in the electromagnetic transient ("full") model, the fluxes in the d and q windings undergo "non-physical" discontinuities, as for the stator currents

