ELEC0047 - Power system dynamics, control and stability

Power system modelling under the phasor approximation

Thierry Van Cutsem
t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct

October 2019

Electromagnetic transient vs. phasor-mode simulations

electromagnetic transient simul. $d \psi / d t$ terms included
virtually any dynamics included
computes the "full-wave" evolutions of voltages and currents
time step smaller than $\simeq 0.0005$ s
network modeled with differential eqs. of inductors and capacitors
simul. under phasor approximation
$d \psi / d t$ terms neglected (in network and connected equipment)
sinusoidal evolution with
varying magnitude and phase angle;
\Rightarrow ignore dynamics shorter than $\simeq 1$ cycle
computes the evolutions of magnitudes and phase angles of voltages and current phasors time step larger than $1 / 4$ cycle (except after a discontinuity)
network modeled by admittance matrix and voltage/current phasors
three-phase representation
all imbalanced conditions
not suitable for large-scale studies simulated time up to $\simeq 10 \mathrm{~s}$
used to design components

+ "hardware-in-the-loop"
Examples:
EMTP-RV, PSCAD, RTDS, ...
simul. under phasor approximation
single-phase representation
by default, balanced conditions
(+ corrections for inverse and zero sequences)
suitable for large-scale studies
(e.g. 25000 buses for the continental European grid)
simulated time
from a few seconds to $10-15$ minutes
used for system-wide stability studies (angle, frequency, voltage)

Examples:
Eurostag, Power Factory, PSS/E, ... RAMSES

Dynamics considered in phasor-mode simulation

Network modelling under the phasor approximation

Network equations based on bus admittance matrix

$$
\begin{equation*}
\overline{\mathbf{I}}=\mathbf{Y} \overline{\mathbf{V}} \tag{1}
\end{equation*}
$$

$\overline{\mathbf{I}}$: vector of complex currents injected into the network at the various nodes
$\overline{\mathbf{V}}$: vector of complex voltages at the various buses
Y : bus (or nodal) admittance matrix
Which frequency consider in the admittances ?

- In dynamic regime, each synchronous machine defines a local frequency
- in most cases those various frequencies remain close to f_{N}
- for large deviations with respect to the nominal value f_{N}, the admittances entering the $\overline{\mathbf{Y}}$ matrix can be updated with the average system frequency
- otherwise, the admittances are simply computed at frequency f_{N}
- this is consistent with the approximation $\omega \simeq 1$ pu made in the Park equations of the synchronous machines.

The synchronous reference frame

Under the phasor approximation, the voltage at the i-th bus ${ }^{1}$ takes on the form:

$$
\begin{aligned}
v_{i}(t) & =\sqrt{2} V_{i}(t) \cos \left(\omega_{N} t+\phi_{i}(t)\right)=\sqrt{2} r e\left[V_{i}(t) e^{j \phi_{i}(t)} e^{j \omega_{N} t}\right] \\
& =\sqrt{2} r e\left[\left(v_{x i}(t)+j v_{y i}(t)\right) e^{j \omega_{N} t}\right]
\end{aligned}
$$

$v_{x i}(t)+j v_{y i}(t)$ is the voltage phasor, in rectangular coordinates, expressed with respect to (x, y) axes rotating at the angular speed ω_{N}.

These (x, y) axes are said to make up a synchronous reference frame.
${ }^{1}$ this is just an example. Similar expressions hold true for currents

Main limitation of the synchronous reference frame :

- after a disturbance the system settles at a new frequency $f \neq f_{N}$
- all phasors rotate at the angular speed $2 \pi f \neq \omega_{N}$
- phasor components such as $v_{x i}$ and $v_{y i}$ oscillate at frequency $\left|f-f_{N}\right|$, although the system is at equilibrium from a practical viewpoint.
- The synchronous reference is not suitable for long-term simulation, since tracking the above oscillations requires using a small enough time step size
- it is thus used in short-term simulation (where frequency has not yet returned to steady state).

In fact, any reference frame (x, y) can be used

- it does not need to rotate at the angular speed ω_{N}; it can rotate at any known speed which is convenient
- the only constraint is that all voltage and current phasors must refer to the same axes.

The center of inertia reference

Consider axes (x, y) rotating at the angular speed :

$$
\dot{\theta}_{c o i}=\frac{d}{d t}\left(\frac{\sum_{i=1}^{m} M_{i} \theta_{r i}}{\sum_{i=1}^{m} M_{i}}\right)=\frac{\sum_{i=1}^{m} M_{i} \dot{\theta}_{r i}}{\sum_{i=1}^{m} M_{i}}
$$

where:
m is the total number of synchronous machines
$\dot{\theta}_{r i}$ is the angular speed of i-th synchronous machine $(i=1, \ldots, m)(\mathrm{rad} / \mathrm{s})$
M_{i} is the inertia of the i-th machine expressed on a common base power S_{B}

$$
M_{i}=2 H_{i} \frac{S_{N i}}{S_{B}}
$$

$\dot{\theta}_{\text {coi }}$ is the angular speed of the center of inertia ($\mathrm{rad} / \mathrm{s}$).

- When the system settles at a frequency f, all synchronous machines rotate at the speed $2 \pi f$, and so do the reference axes ($\omega_{c o i}=2 \pi f$)
- phasor components such as $v_{x i}$ and $v_{y i}$ tend to constant values
- simulation is less demanding and a larger time step size can be used
- this reference frame is suitable for long-term simulation.

Network equations in an (x, y) reference frame

With all voltage and current phasors referred to the (x, y) axes, the network equations take on the form:

$$
\mathbf{i}_{x}+j \mathbf{i}_{y}=\mathbf{Y}\left(\mathbf{v}_{x}+j \mathbf{v}_{y}\right)=(\mathbf{G}+j \mathbf{B})\left(\mathbf{v}_{x}+j \mathbf{v}_{y}\right)
$$

with:

$$
\begin{gathered}
\mathbf{v}_{x}=\left[\begin{array}{c}
v_{x 1} \\
\vdots \\
v_{x N}
\end{array}\right] \quad \mathbf{v}_{y}=\left[\begin{array}{c}
v_{y 1} \\
\vdots \\
v_{y N}
\end{array}\right] \quad \mathbf{i}_{x}=\left[\begin{array}{c}
i_{x 1} \\
\vdots \\
i_{x N}
\end{array}\right] \quad \mathbf{i}_{y}=\left[\begin{array}{c}
i_{y 1} \\
\vdots \\
i_{y N}
\end{array}\right] \\
\text { G: conductance matrix } \\
\text { B: susceptance matrix }
\end{gathered}
$$

Decomposing into real and imaginary parts and assembling into a single equation:

$$
\left[\begin{array}{l}
\mathbf{i}_{x} \\
\mathbf{i}_{y}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{G} & -\mathbf{B} \\
\mathbf{B} & \mathbf{G}
\end{array}\right]\left[\begin{array}{l}
\mathbf{v}_{x} \\
\mathbf{v}_{y}
\end{array}\right]
$$

N buses $\longrightarrow 2 N$ equations involving $4 N$ variables

Incorporating synchronous machines

Passing from individual machine to network reference frame

The (d, q) reference frame simplifies a lot the machine model but it is a "local" reference. It is required to get back to the common reference.

The reference axes (x, y) rotate at the angular speed $\omega_{r e f}$
c is an arbitrary constant
δ is often called rotor angle

$$
\begin{aligned}
\tilde{V} & =\left(v_{x}+j v_{y}\right) e^{j\left(\omega_{r e f} t+c\right)}=\left(v_{q}+j v_{d}\right) e^{j\left(\delta+\omega_{r e f} t+c\right)} \\
\Leftrightarrow \quad v_{x}+j v_{y} & =\left(v_{q}+j v_{d}\right) e^{j \delta}=\left(v_{q}+j v_{d}\right)(\cos \delta+j \sin \delta)
\end{aligned}
$$

Decomposing into real and imaginary parts:

$$
\begin{aligned}
& v_{d}=-\sin \delta v_{x}+\cos \delta v_{y} \\
& v_{q}=\cos \delta v_{x}+\sin \delta v_{y}
\end{aligned}
$$

Similarly for the currents:

$$
\begin{aligned}
& i_{d}=-\sin \delta i_{x}+\cos \delta i_{y} \\
& i_{q}=\cos \delta i_{x}+\sin \delta i_{y}
\end{aligned}
$$

The machine stator equations ${ }^{2}$:

$$
\begin{aligned}
& v_{d}=-R_{a} i_{d}-\psi_{q}=-R_{a} i_{d}-\left(L_{\ell} i_{q}+\psi_{a q}\right) \\
& v_{q}=-R_{\mathrm{a}} i_{q}+\psi_{d}=-R_{a} i_{q}+\left(L_{\ell} i_{d}+\psi_{a d}\right)
\end{aligned}
$$

can be expressed in terms of $v_{x}, v_{y}, i_{x}, i_{y}$ as follows:
$\left(-\sin \delta v_{x}+\cos \delta v_{y}\right)+R_{a}\left(-\sin \delta i_{x}+\cos \delta i_{y}\right)+L_{\ell}\left(\cos \delta i_{x}+\sin \delta i_{y}\right)+\psi_{a q}=0$
$\left(\cos \delta v_{x}+\sin \delta v_{y}\right)+R_{a}\left(\cos \delta i_{x}+\sin \delta i_{y}\right)-L_{\ell}\left(-\sin \delta i_{x}+\cos \delta i_{y}\right)-\psi_{a d}=0$
${ }^{2}$ See lecture "Dynamics of the synchronous machine" - Section "Model simplifications"

Adjusting the motion equation to change from the variable θ_{r} to the variable δ

$$
\theta_{r}=\omega_{r e f} t+c+\delta+\frac{\pi}{2} \quad \Leftrightarrow \quad \frac{d}{d t} \theta_{r}=\omega_{r e f}+\frac{d}{d t} \delta
$$

Hence, the previous equation :

$$
\frac{1}{\omega_{N}} \frac{d}{d t} \theta_{r}=\omega
$$

is replaced by :

$$
\frac{1}{\omega_{N}} \frac{d}{d t} \delta=\omega-\frac{\omega_{r e f}}{\omega_{N}}
$$

- with the synchronous reference : $\frac{1}{\omega_{N}} \frac{d}{d t} \delta=\omega-1$
- with the COI reference : $\frac{1}{\omega_{N}} \frac{d}{d t} \delta=\omega-\omega_{c o i} \quad$ where $\quad \omega_{c o i}=\frac{\sum_{i=1}^{m} M_{i} \omega_{i}}{\sum_{i=1}^{m} M_{i}}$ where ω, ω_{i} and $\omega_{\text {coi }}$ are in per unit.

The motion equation $\quad 2 H \frac{d}{d t} \omega=T_{m}-T_{e} \quad$ is unchanged.

Incorporating induction machines

The induction machine model relies on (d, q) axes rotating at ω_{s}, the stator angular speed.

- In order the model to properly account for the effect of frequency, it is appropriate to use the center of inertia reference and approximate ω_{s} by $\omega_{\text {coi }}$ (the average angular frequency of the whole system)
- make the q axis coincide with the x axis
- make the d axis coincide with the y axis.

The machine stator equations ${ }^{3}$:

$$
\begin{aligned}
& v_{d s}=R_{s} i_{d s}+\omega_{s} \psi_{q s}=R_{s} i_{d s}+\omega_{s} L_{s s} i_{q s}+\omega_{s} L_{s r} i_{q r} \\
& v_{q s}=R_{s} i_{q s}-\omega_{s} \psi_{d s}=R_{s} i_{q s}-\omega_{s} L_{s s} i_{d s}-\omega_{s} L_{s r} i_{d r}
\end{aligned}
$$

become :

$$
\begin{aligned}
& v_{y}-R_{s} i_{y}-\omega_{c o i} L_{s s} i_{x}-\omega_{c o i} L_{s r} i_{q r}=0 \\
& v_{x}-R_{s} i_{x}+\omega_{c o i} L_{s s} i_{y}+\omega_{c o i} L_{s r} i_{d r}=0
\end{aligned}
$$

[^0]
Incorporating static loads

Consider a load whose active and reactive powers vary with the terminal voltage V according to known algebraic relations $P(V)$ and $Q(V)$.

voltage magnitude: $V=\sqrt{v_{x}^{2}+v_{y}^{2}}$
Note: in the formulation (1) the bus currents are oriented into the network

$$
P(V)+j Q(V)=-\bar{V} \bar{I}^{\star}=-\left(v_{x}+j v_{y}\right)\left(i_{x}-j i_{y}\right)
$$

Decomposing into real and imaginary parts:

$$
\begin{aligned}
& P\left(\sqrt{v_{x}^{2}+v_{y}^{2}}\right)+v_{x} i_{x}+v_{y} i_{y}=0 \\
& Q\left(\sqrt{v_{x}^{2}+v_{y}^{2}}\right)-v_{x} i_{y}+v_{y} i_{x}=0
\end{aligned}
$$

Extension

Consider a load whose active and reactive powers vary with the terminal voltage V and frequency f according to known algebraic relations $P(V, f)$ and $Q(V, f)$.

How is the frequency evaluated in phasor-mode simulation?

- during transients, there is not a single frequency
- the frequency at a bus can be obtained numerically as the derivative of the voltage phase angle at that bus
- instead, the average system frequency $\omega_{\text {coi }}$ can be used, as for the induction machine (thus, the same value is used for all loads).

Overall model of components connected to network

State vector of i-th "injector":

$$
\mathbf{x}_{i}=\left[\begin{array}{ll}
i_{x i} & i_{y y} \ldots \tag{2}
\end{array}\right]^{T}
$$

Differential-algebraic model of i-th injector:

$$
\begin{equation*}
\Gamma_{i} \dot{\boldsymbol{x}}_{i}=\boldsymbol{f}_{i}\left(\boldsymbol{x}_{i}, v_{x j}, v_{y j}\right) \tag{3}
\end{equation*}
$$

with $\operatorname{dim} \boldsymbol{x}_{\boldsymbol{i}}=\operatorname{dim} \boldsymbol{f}_{\boldsymbol{i}}$.
$\boldsymbol{\Gamma}_{i}$: square matrix with zero elements, except:
$\left[\boldsymbol{\Gamma}_{i}\right]_{k \ell}=1 \quad$ if the k-th equation gives $\quad\left[\dot{x}_{i}\right]_{\ell}$

[^0]: ${ }^{3}$ See lecture "Dynamics of the induction machine"

