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Power system modelling under the phasor approximation Electromagnetic transient vs. phasor-mode simulations

Electromagnetic transient vs. phasor-mode simulations

electromagnetic transient simul. simul. under phasor approximation

dψ/dt terms included dψ/dt terms neglected
(in network and connected equipment)

virtually any dynamics included sinusoidal evolution with
varying magnitude and phase angle;

⇒ ignore dynamics shorter than ' 1 cycle

computes the “full-wave” evolutions computes the evolutions
of voltages and currents of magnitudes and phase angles

of voltages and current phasors

time step smaller than ' 0.0005 s time step larger than 1/4 cycle
(except after a discontinuity)

network modeled with differential eqs. network modeled by admittance matrix
of inductors and capacitors and voltage/current phasors
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electromagnetic transient simul. simul. under phasor approximation

three-phase representation single-phase representation

all imbalanced conditions by default, balanced conditions
(+ corrections for inverse and zero sequences)

not suitable for large-scale studies suitable for large-scale studies
(e.g. 25000 buses for the continental European grid)

simulated time up to ' 10 s simulated time
from a few seconds to 10-15 minutes

used to design components used for system-wide stability studies
+ “hardware-in-the-loop” (angle, frequency, voltage)

Examples: Examples:
EMTP-RV, PSCAD, RTDS, . . . Eurostag, Power Factory, PSS/E, . . .

RAMSES
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Dynamics considered in phasor-mode simulation
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Network modelling under the phasor approximation

Network equations based on bus admittance matrix

Ī = YV̄ (1)

Ī : vector of complex currents injected into the network at the various nodes
V̄ : vector of complex voltages at the various buses
Y : bus (or nodal) admittance matrix

Which frequency consider in the admittances ?

In dynamic regime, each synchronous machine defines a local frequency

in most cases those various frequencies remain close to fN

for large deviations with respect to the nominal value fN , the admittances
entering the Ȳ matrix can be updated with the average system frequency

otherwise, the admittances are simply computed at frequency fN

this is consistent with the approximation ω ' 1 pu made in the Park
equations of the synchronous machines.
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The synchronous reference frame

Under the phasor approximation, the voltage at the i-th bus1 takes on the form:

vi (t) =
√

2Vi (t) cos(ωNt + φi (t)) =
√

2 re
[
Vi (t)e j φi (t)e j ωN t

]
=
√

2 re
[
(vxi (t) + jvyi (t)) e j ωN t

]
vxi (t) + j vyi (t) is the voltage phasor, in rectangular coordinates, expressed with
respect to (x , y) axes rotating at the angular speed ωN .

re

im

x

y

ωN t

φi

Vie
jφiejωN t

vxi

vyi

These (x , y) axes are said to make up a synchronous reference frame.

1this is just an example. Similar expressions hold true for currents
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Main limitation of the synchronous reference frame :

after a disturbance the system settles at a new frequency f 6= fN

all phasors rotate at the angular speed 2πf 6= ωN

phasor components such as vxi and vyi oscillate at frequency |f − fN |,
although the system is at equilibrium from a practical viewpoint.

The synchronous reference is not suitable for long-term simulation, since
tracking the above oscillations requires using a small enough time step size

it is thus used in short-term simulation (where frequency has not yet returned
to steady state).

In fact, any reference frame (x , y) can be used

it does not need to rotate at the angular speed ωN ; it can rotate at any
known speed which is convenient

the only constraint is that all voltage and current phasors must refer to the
same axes.
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The center of inertia reference

Consider axes (x , y) rotating at the angular speed :

θ̇coi =
d

dt

(∑m
i=1 Miθri∑m
i=1 Mi

)
=

∑m
i=1 Mi θ̇ri∑m
i=1 Mi

where:

m is the total number of synchronous machines

θ̇ri is the angular speed of i-th synchronous machine (i = 1, . . . ,m) (rad/s)

Mi is the inertia of the i-th machine expressed on a common base power SB

Mi = 2Hi
SNi
SB

θ̇coi is the angular speed of the center of inertia (rad/s).

When the system settles at a frequency f , all synchronous machines rotate at
the speed 2πf , and so do the reference axes (ωcoi = 2πf )

phasor components such as vxi and vyi tend to constant values

simulation is less demanding and a larger time step size can be used

this reference frame is suitable for long-term simulation.
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Network equations in an (x , y) reference frame

With all voltage and current phasors referred to the (x , y) axes, the network
equations take on the form:

ix + j iy = Y (vx + j vy ) = (G + j B) (vx + j vy )

with:

vx =

 vx1

...
vxN

 vy =

 vy1

...
vyN

 ix =

 ix1

...
ixN

 iy =

 iy1

...
iyN


G: conductance matrix B: susceptance matrix

Decomposing into real and imaginary parts and assembling into a single equation:[
ix
iy

]
=

[
G −B
B G

] [
vx
vy

]
N buses −→ 2N equations involving 4N variables
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Incorporating synchronous machines

Passing from individual machine to network reference frame

The (d , q) reference frame simplifies a lot the machine model but it is a “local”
reference. It is required to get back to the common reference.

The reference axes (x , y) rotate
at the angular speed ωref

c is an arbitrary constant

δ is often called rotor angle

Ṽ = (vx + jvy )e j(ωref t+c) = (vq + jvd)e j(δ+ωref t+c)

⇔ vx + jvy = (vq + jvd)e jδ = (vq + jvd) (cos δ + j sin δ)

Decomposing into real and imaginary parts:

vd = − sin δ vx + cos δ vy

vq = cos δ vx + sin δ vy
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Power system modelling under the phasor approximation Incorporating synchronous machines

Similarly for the currents:

id = − sin δ ix + cos δ iy

iq = cos δ ix + sin δ iy

The machine stator equations2:

vd = −Raid − ψq = −Raid − (L`iq + ψaq)

vq = −Raiq + ψd = −Raiq + (L`id + ψad)

can be expressed in terms of vx , vy , ix , iy as follows:

(− sin δ vx + cos δ vy ) + Ra(− sin δ ix + cos δ iy ) + L`(cos δ ix + sin δ iy ) + ψaq = 0

(cos δ vx + sin δ vy ) + Ra(cos δ ix + sin δ iy )− L`(− sin δ ix + cos δ iy )− ψad = 0

2See lecture “Dynamics of the synchronous machine” - Section “Model simplifications”
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Adjusting the motion equation to change from the variable θr to the variable δ

θr = ωref t + c + δ +
π

2
⇔ d

dt
θr = ωref +

d

dt
δ

Hence, the previous equation :

1

ωN

d

dt
θr = ω

is replaced by :
1

ωN

d

dt
δ = ω − ωref

ωN

with the synchronous reference :
1

ωN

d

dt
δ = ω − 1

with the COI reference :
1

ωN

d

dt
δ = ω − ωcoi where ωcoi =

∑m
i=1 Miωi∑m
i=1 Mi

where ω, ωi and ωcoi are in per unit.

The motion equation 2H
d

dt
ω = Tm − Te is unchanged.
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Incorporating induction machines

The induction machine model relies on (d , q) axes rotating at ωs , the stator
angular speed.

In order the model to properly account for the effect of frequency, it is
appropriate to use the center of inertia reference and approximate ωs by ωcoi

(the average angular frequency of the whole system)

make the q axis coincide with the x axis

make the d axis coincide with the y axis.

The machine stator equations3:

vds = Rs ids + ωsψqs = Rs ids + ωsLss iqs + ωsLsr iqr

vqs = Rs iqs − ωsψds = Rs iqs − ωsLss ids − ωsLsr idr

become :

vy − Rs iy − ωcoiLss ix − ωcoiLsr iqr = 0

vx − Rs ix + ωcoiLss iy + ωcoiLsr idr = 0

3See lecture “Dynamics of the induction machine”
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Incorporating static loads

Consider a load whose active and reactive powers vary with the terminal voltage
V according to known algebraic relations P(V ) and Q(V ).

voltage magnitude: V =
√

v2
x + v2

y

Note: in the formulation (1) the bus currents
are oriented into the network

P(V ) + j Q(V ) = −V̄ Ī ? = −(vx + j vy )(ix − j iy )

Decomposing into real and imaginary parts:

P
(√

v2
x + v2

y

)
+ vx ix + vy iy = 0

Q
(√

v2
x + v2

y

)
− vx iy + vy ix = 0
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Extension

Consider a load whose active and reactive powers vary with the terminal voltage
V and frequency f according to known algebraic relations P(V , f ) and Q(V , f ).

How is the frequency evaluated in phasor-mode simulation ?

during transients, there is not a single frequency

the frequency at a bus can be obtained numerically as the derivative of the
voltage phase angle at that bus

instead, the average system frequency ωcoi can be used, as for the induction
machine (thus, the same value is used for all loads).
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Overall model of components connected to network

injectors

j−th bus

i−th injector

network

. . . . . .

V = [Vx1 Vy1 . . . VxN VyN ]T

Vxj Vyj

Ixi Iyi

xi = [Ixi Iyi . . . ]T

M

                                                                                                        

State vector of i-th “injector”:

xi = [ixi iyi . . .]
T (2)

Differential-algebraic model of i-th injector:

Γi ẋi = fi (xi , vxj , vyj) (3)

with dim xi = dim fi .

Γi : square matrix with zero elements, except:

[Γi ]k` = 1 if the k-th equation gives [ẋi ]` 16 / 16
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