

ELEC0047 - Power system dynamics, control and stability

Power system modelling under the phasor approximation

Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct

October 2019

Electromagnetic transient vs. phasor-mode simulations

electromagnetic transient simul.	simul. under phasor approximation
$d\psi/dt$ terms included	$d\psi/dt$ terms neglected (in network and connected equipment)
virtually any dynamics included	sinusoidal evolution with varying magnitude and phase angle; \Rightarrow ignore dynamics shorter than $\simeq 1$ cycle
computes the "full-wave" evolutions of voltages and currents	computes the evolutions of magnitudes and phase angles of voltages and current phasors
time step smaller than \simeq 0.0005 s	time step larger than 1/4 cycle (except after a discontinuity)
network modeled with differential eqs. of inductors and capacitors	network modeled by admittance matrix and voltage/current phasors

electromagnetic transient simul.	simul. under phasor approximation
three-phase representation	single-phase representation
all imbalanced conditions	by default, balanced conditions (+ corrections for inverse and zero sequences)
not suitable for large-scale studies	suitable for large-scale studies (e.g. 25000 buses for the continental European grid)
simulated time up to $\simeq 10$ s	simulated time from a few seconds to 10-15 minutes
used to design components + "hardware-in-the-loop"	used for system-wide stability studies (angle, frequency, voltage)
<i>Examples:</i> EMTP-RV, PSCAD, RTDS,	<i>Examples:</i> Eurostag, Power Factory, PSS/E, <i>RAMSES</i>

Dynamics considered in phasor-mode simulation

Network modelling under the phasor approximation

Network equations based on bus admittance matrix

$\overline{\mathbf{I}}=\mathbf{Y}\overline{\mathbf{V}}$

- $\overline{\mathbf{I}}$: vector of complex currents injected into the network at the various nodes
- $ar{\mathbf{V}}$: vector of complex voltages at the various buses
- **Y** : bus (or nodal) admittance matrix

Which frequency consider in the admittances ?

- In dynamic regime, each synchronous machine defines a local frequency
- in most cases those various frequencies remain close to f_N
- for large deviations with respect to the nominal value f_N , the admittances entering the $\bar{\mathbf{Y}}$ matrix can be updated with the average system frequency
- $\bullet\,$ otherwise, the admittances are simply computed at frequency f_N
- this is consistent with the approximation $\omega\simeq 1$ pu made in the Park equations of the synchronous machines.

(1)

The synchronous reference frame

Under the phasor approximation, the voltage at the *i*-th bus¹ takes on the form:

$$\begin{aligned} v_i(t) &= \sqrt{2} V_i(t) \cos(\omega_N t + \phi_i(t)) = \sqrt{2} re \left[V_i(t) e^{j \phi_i(t)} e^{j \omega_N t} \right] \\ &= \sqrt{2} re \left[(v_{xi}(t) + j v_{yi}(t)) e^{j \omega_N t} \right] \end{aligned}$$

 $v_{xi}(t) + j v_{yi}(t)$ is the voltage phasor, in rectangular coordinates, expressed with respect to (x, y) axes rotating at the angular speed ω_N .

These (x, y) axes are said to make up a synchronous reference frame.

¹this is just an example. Similar expressions hold true for currents

Main limitation of the synchronous reference frame :

- after a disturbance the system settles at a new frequency $f \neq f_N$
- all phasors rotate at the angular speed $2\pi f \neq \omega_N$
- phasor components such as v_{xi} and v_{yi} oscillate at frequency $|f f_N|$, although the system is at equilibrium from a practical viewpoint.
- The synchronous reference is not suitable for long-term simulation, since tracking the above oscillations requires using a small enough time step size
- it is thus used in short-term simulation (where frequency has not yet returned to steady state).

- In fact, any reference frame (x, y) can be used
 - it does not need to rotate at the angular speed ω_N ; it can rotate at any known speed which is convenient
 - the only constraint is that all voltage and current phasors must refer to the same axes.

The center of inertia reference

Consider axes (x, y) rotating at the angular speed :

$$\dot{\theta}_{coi} = \frac{d}{dt} \left(\frac{\sum_{i=1}^{m} M_i \theta_{ii}}{\sum_{i=1}^{m} M_i} \right) = \frac{\sum_{i=1}^{m} M_i \dot{\theta}_{ii}}{\sum_{i=1}^{m} M_i}$$

where:

m is the total number of synchronous machines

 $\dot{\theta}_{ri}$ is the angular speed of *i*-th synchronous machine (i = 1, ..., m) (rad/s) M_i is the inertia of the *i*-th machine expressed on a common base power S_B

$$M_i = 2H_i \frac{S_{Ni}}{S_B}$$

 $\dot{\theta}_{coi}$ is the angular speed of the *center of inertia* (rad/s).

- When the system settles at a frequency f, all synchronous machines rotate at the speed $2\pi f$, and so do the reference axes ($\omega_{coi} = 2\pi f$)
- phasor components such as v_{xi} and v_{yi} tend to constant values
- simulation is less demanding and a larger time step size can be used
- this reference frame is suitable for long-term simulation.

Network equations in an (x, y) reference frame

With all voltage and current phasors referred to the (x, y) axes, the network equations take on the form:

$$\mathbf{i}_{x} + j \, \mathbf{i}_{y} = \mathbf{Y} \left(\mathbf{v}_{x} + j \, \mathbf{v}_{y} \right) = \left(\mathbf{G} + j \, \mathbf{B} \right) \left(\mathbf{v}_{x} + j \, \mathbf{v}_{y} \right)$$

with:

$$\mathbf{v}_{x} = \begin{bmatrix} v_{x1} \\ \vdots \\ v_{xN} \end{bmatrix} \quad \mathbf{v}_{y} = \begin{bmatrix} v_{y1} \\ \vdots \\ v_{yN} \end{bmatrix} \quad \mathbf{i}_{x} = \begin{bmatrix} i_{x1} \\ \vdots \\ i_{xN} \end{bmatrix} \quad \mathbf{i}_{y} = \begin{bmatrix} i_{y1} \\ \vdots \\ i_{yN} \end{bmatrix}$$
$$\mathbf{G}: \text{ conductance matrix} \qquad \mathbf{B}: \text{ susceptance matrix}$$

Decomposing into real and imaginary parts and assembling into a single equation:

$$\left[\begin{array}{c} \mathbf{i}_{x} \\ \mathbf{i}_{y} \end{array}\right] = \left[\begin{array}{cc} \mathbf{G} & -\mathbf{B} \\ \mathbf{B} & \mathbf{G} \end{array}\right] \left[\begin{array}{c} \mathbf{v}_{x} \\ \mathbf{v}_{y} \end{array}\right]$$

N buses $\longrightarrow 2N$ equations involving 4N variables

Incorporating synchronous machines

Passing from individual machine to network reference frame

The (d, q) reference frame simplifies a lot the machine model but it is a "local" reference. It is required to get back to the common reference.

Decomposing into real and imaginary parts:

Similarly for the currents:

$$\begin{aligned} i_d &= -\sin \delta \ i_x + \cos \delta \ i_y \\ i_q &= \cos \delta \ i_x + \sin \delta \ i_y \end{aligned}$$

The machine stator equations²:

$$\begin{aligned} \mathbf{v}_d &= -R_a i_d - \psi_q = -R_a i_d - \left(L_\ell i_q + \psi_{aq}\right) \\ \mathbf{v}_q &= -R_a i_q + \psi_d = -R_a i_q + \left(L_\ell i_d + \psi_{ad}\right) \end{aligned}$$

can be expressed in terms of v_x, v_y, i_x, i_y as follows:

$$(-\sin\delta v_x + \cos\delta v_y) + R_a(-\sin\delta i_x + \cos\delta i_y) + L_\ell(\cos\delta i_x + \sin\delta i_y) + \psi_{aq} = 0 (\cos\delta v_x + \sin\delta v_y) + R_a(\cos\delta i_x + \sin\delta i_y) - L_\ell(-\sin\delta i_x + \cos\delta i_y) - \psi_{ad} = 0$$

²See lecture "Dynamics of the synchronous machine" - Section "Model simplifications"

Adjusting the motion equation to change from the variable θ_r to the variable δ

$$heta_r = \omega_{ref}t + c + \delta + rac{\pi}{2} \quad \Leftrightarrow \quad rac{d}{dt} heta_r = \omega_{ref} + rac{d}{dt}\delta$$

Hence, the previous equation :

$$\frac{1}{\omega_N}\frac{d}{dt}\theta_r = \omega$$

is replaced by :

$$\frac{1}{\omega_{\text{N}}}\frac{d}{dt}\delta=\omega-\frac{\omega_{\text{ref}}}{\omega_{\text{N}}}$$

• with the synchronous reference :
$$\frac{1}{\omega_N} \frac{d}{dt} \delta = \omega - 1$$

• with the COI reference :
$$\frac{1}{\omega_N} \frac{d}{dt} \delta = \omega - \omega_{coi}$$
 where $\omega_{coi} = \frac{\sum_{i=1}^m M_i \omega_i}{\sum_{i=1}^m M_i}$

where ω , ω_i and ω_{coi} are in per unit.

The motion equation

$$2H\frac{d}{dt}\omega = T_m - T_e$$
 is unchanged.

Incorporating induction machines

The induction machine model relies on (d, q) axes rotating at ω_s , the stator angular speed.

- In order the model to properly account for the effect of frequency, it is appropriate to use the center of inertia reference and approximate ω_s by ω_{coi} (the average angular frequency of the whole system)
- make the q axis coincide with the x axis
- make the *d* axis coincide with the *y* axis.

The machine stator equations³:

$$\begin{array}{lll} v_{ds} &=& R_s i_{ds} + \omega_s \psi_{qs} = R_s i_{ds} + \omega_s L_{ss} i_{qs} + \omega_s L_{sr} i_{qr} \\ v_{qs} &=& R_s i_{qs} - \omega_s \psi_{ds} = R_s i_{qs} - \omega_s L_{ss} i_{ds} - \omega_s L_{sr} i_{dr} \end{array}$$

become :

$$\begin{array}{rcl} v_y - R_s i_y - \omega_{coi} L_{ss} i_x - \omega_{coi} L_{sr} i_{qr} &=& 0 \\ v_x - R_s i_x + \omega_{coi} L_{ss} i_y + \omega_{coi} L_{sr} i_{dr} &=& 0 \end{array}$$

³See lecture "Dynamics of the induction machine"

Incorporating static loads

Consider a load whose active and reactive powers vary with the terminal voltage V according to known algebraic relations P(V) and Q(V).

$$\bar{I} \qquad \underbrace{V}_{S = P(V) + jQ(V)}_{S = P(V) + jQ(V)}$$

<u>,</u>

voltage magnitude: $V = \sqrt{v_x^2 + v_y^2}$

Note: in the formulation (1) the bus currents are oriented into the network

$$P(V) + j Q(V) = -\bar{V}\bar{I}^* = -(v_x + j v_y)(i_x - j i_y)$$

Decomposing into real and imaginary parts:

$$P\left(\sqrt{v_{x}^{2}+v_{y}^{2}}\right)+v_{x}i_{x}+v_{y}i_{y} = 0$$
$$Q\left(\sqrt{v_{x}^{2}+v_{y}^{2}}\right)-v_{x}i_{y}+v_{y}i_{x} = 0$$

Extension

Consider a load whose active and reactive powers vary with the terminal voltage V and frequency f according to known algebraic relations P(V, f) and Q(V, f).

How is the frequency evaluated in phasor-mode simulation ?

- during transients, there is not a *single* frequency
- the frequency at a bus can be obtained *numerically* as the derivative of the voltage phase angle at that bus
- instead, the average system frequency ω_{coi} can be used, as for the induction machine (thus, the same value is used for all loads).

Power system modelling under the phasor approximation Overall model of components connected to network

Overall model of components connected to network

State vector of *i*-th "injector":

$$\mathbf{x}_i = \begin{bmatrix} i_{xi} & i_{yi} \dots \end{bmatrix}^T \tag{2}$$

Differential-algebraic model of *i*-th injector:

$$\boldsymbol{\Gamma}_i \; \dot{\boldsymbol{x}}_i = \boldsymbol{f}_i(\boldsymbol{x}_i, \boldsymbol{v}_{xj}, \boldsymbol{v}_{yj}) \tag{3}$$

with dim $\mathbf{x}_i = \dim \mathbf{f}_i$.

 Γ_i : square matrix with zero elements, except:

 $[\mathbf{\Gamma}_i]_{k\ell} = 1$ if the *k*-th equation gives $[\dot{\mathbf{x}}_i]_\ell$