Course ELEC0047 "Power system dynamics, control and stability"

HOMEWORK # 5 - Deadline : January 13, 2020

Consider the one-machine infinite-bus system detailed in the theoretical slides.

To damp the electromechanical mode λ_c (see Exercise 1 in the course slides), the machine is equipped with a PSS using the following input:

Variant	1	2	3	4
PSS input	-P	ω	-P	ω
т	1	2	1	2

P : active power produced

Step 1

Identify the residue R_c of the λ_c eigenvalue.

Suggestion: the Matlab functions ss2tf and residue can be very useful.

Step 2

Choose the values of T_z , T_p and T_w in the PSS transfer function:

$$G(s) = rac{s}{1+sT_w} \left(rac{1+sT_z}{1+sT_p}
ight)^m$$

where m is given in the above table.

Step 3

- Extend the Matlab script omib.m to include the differential-algebraic equations and the states corresponding to the PSS. Use Homework 3 !
- Check: when K_{pss} is set to zero:
 - verify that the previous eigenvalues are unchanged
 - check the eigenvalues stemming from the PSS.
- Increase K_{pss} progressively until obtaining a damping ratio $\xi = 0.20$ for the electromechanical mode λ_c .
- While *K*_{pss} is increased, check that no other eigenvalue moves to an unsatisfactory value.

Step 4

Determine the stability limits of Exercise 3 in the presence of the PSS. How does the PSS affect the limits ?

As usual, explain your derivations in detail and append your Matlab code.