HOMEWORK # 3 - Deadline : November 25, 2019

Under the phasor approximation, an "injector" ¹ is modelled as :

$$m{\Gamma}\,\dot{m{x}}=m{f}(m{x},m{v}_x,m{v}_y,m{p})$$
 with $m{x}(0)=m{x}^o$

where:

- dim $x = \dim f = n$
- Γ is an $n \times n$ matrix with : $\Gamma_{ij} = 1$ if the *i*-th equation gives $\dot{x}_j = 0$ otherwise.
- v_x and v_y are the components of the terminal voltage
- the state vector **x** includes i_x and i_y , the components of the current injected in the network:

$$\mathbf{x} = [i_x, i_y, \ldots]^T$$

• **p** is a vector of parameters, considered constant in the model.

(1)

¹see slide # 16 of lecture "Power system modelling under the phasor approximation"

Consider a Static Var Compensator (SVC) represented by a variable shunt susceptance B, controlled as shown in the block diagram below.

 V^o is the voltage set-point. B_c is a known, fixed shunt susceptance.

Assume the model is treated by an *automatic* "equation generator", treating the equations of each block *independently*, i.e. the model of each block may only involve : the input state, the output state and possibly additional internal states.

Write down the SVC model in the form (1) with :

$$\mathbf{x} = [i_x, i_y, x_1, x_2, x_3, \text{internal states}]^T$$

At t = 0, the compensator is in steady state and produces a reactive power Q^o under a voltage V^o . Determine the initial state vector $\mathbf{x}(0)$ and the set-point V^o .