HOMEWORK # 1 - Deadline : October 28, 2019

Consider a synchronous machine with the following parameters:

$S_N = 1200 \text{ MVA}$	$f_N = 50 \text{ Hz}$
$X_\ell=0.20$ pu	$R_{a} = 0.004 { m pu}$
$X_d = 2.10 { m pu}$	$X_q = 2.10 { m pu}$
$X_d^\prime=0.30$ pu	$X'_{q} = 0.73$ pu
$X_d^{\prime\prime}=0.25$ pu	$X_{q}^{''}=0.256~{ m pu}$

(as usual the values in pu refer to the machine nominal power and voltage)

	Variant 1	Variant 2	Variant 3	Variant 4
$T_{do}^{\prime\prime}$ (s)	0.025	0.028	0.030	0.027
$T_{do}^{'}$ (s)	8.500	7.500	9.100	8.000
$T_{qo}^{\prime\prime}$ (s)	0.220	0.300	0.200	0.250
<i>T</i> _{qo} (s)	2.200	2.500	2.300	2.100

Determine the rotor winding resistances and the inductance matrices L_d , L_q of the Park model, using the EMFL per unit system.

Check your answers by computing $X_d^{''}$ and $X_q^{''}$ from the Park inductance matrices and comparing with the given values.

Compute X'_{d} and X'_{q} from the Park inductance matrices and compare with the given values. Comment.

Suggestion. First identify the time constants in :

$$\ell_d(s) = L_{dd} rac{(1+sT_d^{'})(1+sT_d^{''})}{(1+sT_{d0}^{''})(1+sT_{d0}^{''})} ~~ \ell_q(s) = L_{qq} rac{(1+sT_q^{'})(1+sT_q^{''})}{(1+sT_{q0}^{''})(1+sT_{q0}^{''})}$$

then, identify the resistances and inductances of the dynamic equivalent circuits (slide # 26 of "Dynamics of the synchronous machine") by matching $s\ell_d(s)$ and $s\ell_q(s)$ with the corresponding impedances.

<u>Caveat</u>. Consider the time constant of a simple R-L circuit : $\tau = L/R$. Assume L and R are both in pu. Then τ is also in pu. Hence, to identify L or R from τ , the latter must be converted into per unit.