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Dynamics of the synchronous machine = Time constants and characteristic inductances

Time constants and characteristic in

Objective

@ define accurately a number of time constants and inductances characterizing
the machine electromagnetic transients

@ use these expressions to derive from measurements the inductances and
resistances of the Park model

Assumption

As we focus on electromagnetic transients, the rotor speed € is assumed constant,
since it varies much more slowly.
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Laplace transform of Park equations

Vd(S) + 9,¢q(s) R, + sLgqg sLyr Sdel /d(S)
— Vf(S) = - sLyr Rf + sLg sleg, If(S)
0 Sde1 5Lfd1 Rd1 + 5Ld1d1 Idl (S)
Rd + SLd
ia(0)
+Lg | ir(0)
id1 (0)
Vo(s) = 0-1b4(s) Ra + sLqq SLaq, SLqq, lq(s)
0 = - sLqq Rg, + sLgiq sLgiq lg (5)
O Squ2 SLqmz qu + Squth IQ2 (S)
R, +sLg
i(0)
+Lg ’.q1(0)
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Time constants and inductances

Eliminating /¢, lg,, lg, and /g, yields:

Va(s) + 0,bg(s) = —Za(s)la(s) + sG(s) Vi(s)
Va(s) = 0:a(s) = —Zq(s)lg(s)
where :
-1
. Rf + sLg sl sLgf
Z4(s) = Ra+slag— [ slar Slad, | { sLig, Ry, + sLa,a, sLag,
= R,+sl4(s) L4(s) : d-axis operational inductance
-1
_ _ Rq, + sLgq sLg,q, sLqq,
Zq(S) B Ra+Squ [ Squl 5qu2 ] |: 5Lq1qz qu +SL¢72¢72 Squ2

= Ry +sly(s) Lq(s) : g-axis operational inductance
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Considering the nature of RL circuits, £4(s) and £4(s) can be factorized into:

(1+sT,)(1+sT,) _ v A
Y4 = L v . th 0< T, <Tu<T,<T,
d4(s) dd(1+5Tdo)(1+5Tdo) wi d do d do

(1+sT,)(1+5sT,) , P ;o
¢ = L g 9 th 0<T, <T,<T,<T,
q(5) 991 +5qu)(1 +5qu) wi q q0 q q0

Limit values:

Iimofd(s) = Ly d-axis synchronous inductance
S—

. T, T, ) .

lim £4(s) = Ly = Loy ==5- d-axis subtransient inductance
s00 Tao Tao

I|m0 le(s) = Lgg g-axis synchronous inductance

S—>

p T, T,

lim 6o(s) = L =1

-axis subtransient inductance
Jm R A
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Direct derivation of L,:

elimin. of f and d;

Ry + sLy — R, + Sfd(s)
s — 00 J i s — 00
sLy — ng

elimin. of f and d;

L  Ley, T L
Leg, Lad, Laa,

Ly = Lago—[ Lor Lag, ][

LfLaya, + Lrl3y — 2LarLgg Lag,

2
Lilaa, — Ly

= Lo —

and similarly for the q axis.
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Transient inductances

If damper winding effects are neglected, the operational inductances simplify into :

1+sT, 1+4sT,
l4(s) = Log——zt- ly(s) = Log——1
1+5sT, 1+ Squ
and the limit values become :
lim £4(s) = L/d =Llg =2 d-axis transient inductance
s—00 TdO
lim ¢ =1L T ' ient ind
Jim. a(s) = Ly=Lg 7, g-axis transient inductance

Using the same derivation as for L;, one easily gets:

, L2 , L2
L, = Ly — =9t L=l — 9o
4T g T Ly
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Typical values

machine with machine with
round rotor | salient poles round rotor | salient poles
(pu) (pu) / (s) (s)
Ly | 1525 0.9-1.5 T, | 80120 3.0-8.0
Ly | 1525 0.5-1.1 T, | 0.95-1.30 1.0-25
L, | 0204 0.3-0.5 T, | 0.025-0.065 | 0.025-0.065
L, | 0204 T, | 0.02-0.05 | 0.02-0.05
Ly | 015030 | 025035 | T, 2.0
Ly | 015030 | 025035 | T, 0.8
T | 020050 | 0.04-0.15
T, | 0.02-0.05 | 0.02-0.05
T, | 0.02-0.60 | 0.02-0.20

inductances in per unit on the machine nominal voltage and apparent power
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Comments

@ in the direct axis: pronounced “time decoupling”:

Tow> Ty Ty>T,

e subtransient time constants T(;, and T(;;): short, originate from damper winding
- . / / - . . . .
e transient time constants T, and T,y long, originate from field winding

@ in the quadrature axis: less pronounced time decoupling
o because the windings are of quite different nature !
@ salient-pole machines: single winding in q axis = the parameters L;, T(; and
T(;O do not exist.
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Rotor motion

0, angular position of rotor, i.e. angle between one axis attached to the rotor
and one attached to the stator. Linked to “electrical” angle 6, through:

0, =pbn p number of pairs of poles
. d
wm Mmechanical angular speed: Wm = Eﬁm
w electrical angular speed: w= EG, = PWm

Basic equation of rotating masses (friction torque neglected):

d
/ m:Tm_Te
dt”

I moment of inertia of all rotating masses
Tm mechanical torque provided by prime mover (turbine, diesel motor, etc.)

T. electromagnetic torque developed by synchronous machine
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Motion equation expressed in terms of w:

I d
——w=T,— T,
p dt
Dividing by the base torque Tg = Sg/wms :
/me d
LW = 7—m u Te u
pSg dtw P P
Defining the speed in per unit:
1 d
Wpy = i - 9,

wy  wydt

and taking wms = wg/p = wn/p, the motion equation becomes:

lw? , d
mB — Wpu = Tmpu - Tepu
Sg dt
Defining the inertia constant:
17,2
H — 2 mB
Sp

the motion equation is rewritten as:

d
2HEUJPU - Tmpu - Tepu
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Inertia constant H

called specific energy

@ ratio  kinetic energy of rotating masses at nominal speed
apparent nominal power of machine

has dimension of a time

with values in rather narrow interval, whatever the machine power.

H

thermal plant hydro plant
p=1:2—-4s| 15 — 3s
p=2:3—-1Ts
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Relationship between H and launching time t,

t; : time to reach the nominal angular speed w,g when applying to the rotor,
initially at rest, the nominal mechanical torque:

Pn o SB COS¢N

Ty =
WmB WmB
Py turbine nominal power (in MW) cos ¢n: nominal power factor

. ) : . Ty

Nominal mechanical torque in per unit: Thpy = T = cos ¢y
B

. ) cos ¢y cos ¢y
Uniformly accelerated motion: Wmpy = W 0) + =
y mpu mpu( ) oH oH
2H
Att=t, w =1 = t =
Iy Wmpu li COS(bN

Remark. Some define t; with reference to Tg, not Ty. In this case, t; = 2H.
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Compensated motion equation

In some simplified models, the damper windings are neglected.
To compensate for the neglected damping torque, a correction term can be added:

d
QHEWPH + D(wpy — Wsys) = Tmpu — Tepu D>0

where wgs is the system angular frequency (which will be defined in “Power
system dynamic modelling under the phasor approximation”).

Expression of electromagnetic torque

Te - p(’(/)diq - wqid)
Using the base defined in slide # 16 :

Te wm
Tepu = T = 5 (¢d’q wq’d)

TB \[VB \[/
Y ’q 1/1q Ig

A \/§/B B V3Ve \@/B = Ydpulgpu — q/}un’dpu
wp wB

(¢d’q 1/)q"d)

In per unit, the factor p disappears.
14 /38
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Per unit system for the synchronous machine model

Recall on per unit systems
Consider two magnetically coupled coils with:
Y1 = Liii + Lioh oy = Lo1ih + Laoh

For simplicity, we take the same time base in both circuits: 15 = o5

: Y1 L1 i Lip i ) Lishg .
In per unit: = —=——+4+——"—=Lipliput+ ——h
- e Lishe L hs PUSPE T Lighg ™
P2 Lyihg . .
¢2pu = T = I1pu + L22pul2pu

Yo Laghs

In Henry, one has L1, = Ly;. We request to have the same in per unit:

hg _ he
Lihg Lyghs

Liopy = Lotpy & & Siptip=Smte & Siz— S5

A per unit system with t;5 = tog and S;g = Sy is called reciprocal
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Dynamics of the synchronous machine  Per unit system for the synchronous machine model

in the single phase in each in each rotor
circuit equivalent to | of the d, g winding,
stator windings windings for instance f
ti t L L
me = — =
B wN 27TfN
power Sg = nominal apparent 3-phase
voltage V: nominal (rms) V3Vg Vig: to be chosen
phase-neutral
SB SB
current Ig = —— 3/ —
E= 3y, V3lg Vs
3V3 3V3 V2
impedance Zg=—L =B —fB
P 575 Ss Se

flux Vits \/§ Vits Vists

16 /38



The equal-mutual-flux-linkage per unit system

For two magnetically coupled coils, it is shown that (see theory of transformer):

2
n

Liu—Ln = ﬁl
2
n

Loy —Lp = %

L1 self-inductance of coil 1

L5> self-inductance of coil 1

Ly leakage inductance of coil 1
Ly leakage inductance of coil 2
ny number of turns of coil 1
n, number of turns of coil 2

R reluctance of the magnetic circuit followed by the magnetic field lines which
cross both windings; the field is created by i; and /.

17 /38



Dynamics of the synchronous machine  Per unit system for the synchronous machine model

Assume we choose Vg and Vg such that:
Vie _ m
Vop  m

In order to have the same base power in both circuits:

/
Vighg = Voghg = IlB _ M
2B n
We have:
ng ni m nino
Liv — LoV Ty M2, mm, .
(bn a)he REBT R n 2B R B 1228 (1)

The flux created by hg in coil 1 is equal to the flux created by /15 in the same
coil 1, after removing the part that corresponds to leakages.

Similarly in coil 2:

n2 n2n mn
(Lo — Lep)bg = %/23 = %nillB = 172/13 = Liohg (2)

This per unit system is said to yield equal mutual flux linkages (EMFL)
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Alternative definition of base currents

From respectively (1) and (2) :

hs Lio he _ Ly —Lp

hg Ly —Lu hg Lo

A property of this pu system

Lishg (L1 — Le1)

12pu LlBllB LlB 11pu L1lpu ( )
Lihg (Lo — L)
L u = = =L u — L u
2p Lyghp Lrg 22p t2p

In this pu system, self-inductance = mutual inductance + leakage reactance.
Does not hold true for inductances in Henry !

The inductance matrix of the two coils takes on the form:

L— Ly Lo | _ | Lan+M M
Lip L M Lo+ M

19/38
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Application to synchronous machine

@ we have to choose a base voltage (or current) in each rotor winding.
Let’s first consider the field winding f (1 =f, 2 = d)

@ we would like to use the EMFL per unit system
@ we do not know the “number of turns” of the equivalent circuits f, d, etc.

@ instead, we can use one of the alternative definitions of base currents:

IfB de — Lg de - LZ
= = lg=3g—L =~ 4
V3lg Lar 8 5 Ly )

o Lg4,Le can be measured

e Lg4r can be obtained by measuring the no-load voltage E; produced by a
known field current is:

UJNLde. Ly = V3E,

Vel o (5)
Se

@ the base voltage is obtained from Vi = .
B

E, =



Dynamics of the synchronous machine  Per unit system for the synchronous machine model

What about the other rotor windings ?

@ one cannot access the di, g1 and g windings to measure Lyq1, Lgg1 et Lgq2
using formulae similar to (5)

@ it can be assumed that there exist base currents Iy, g, Ig, 5 et lg,5 leading to
the EMFL per unit system, but their values are not known

@ hence, we cannot compute voltages in Volt or currents in Ampere in those
windings (only in pu)

@ not a big issue in so far as we do not have to connect anything to those
windings (unlike the excitation system to the field winding). ..
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Numerical example

A machine has the following characteristics:

nominal frequency: 50 Hz
nominal apparent power: 1330 MVA

Xq=09Q X; =0.1083 Q

field current giving the nominal stator voltage at no-load (and nominal
frequency): 2954 A

°
@ stator nominal voltage: 24 kV
°
°

1. Base power, voltage, impedance, inductance and current at the stator

Sg = 1330 MVA
24 000

Ug = 24000 V Vg = = 13856 V
V3

2
ZB:3VB:0.431].Q = Lszé:é: %5 _ 1378107 H
Se wg wy 2750
1330 106
lg = 5 _ 1330107 _ 51905 A

T 3Vg 313856



Dynamics of the synchronous machine  Numerical example

2. Base power, current, voltage, impedance and induct. in field winding
S = Sg = 1330 MVA

V3 E,  V3(24/V3)10° 2
Lar = wnir 2750 2954 =2.580 107 H

Xd 0.9 _3
Logg = — = =286510""H
ad wN 2750
X, 0.1083 4
=—= =3.447107"H
¢ wN 2750
Log — L
Using Eq. (4) : s =V3 Ig % =5401 A
df
1 10°
Vig = S _ 1330100 6051 v

Is 5401

A huge value ! This is to be expected since we use the machine nominal power Sg
in the field winding, which is not designed to carry such a high power !

Vig 246251 Ze  45.504
Zg = B — —45504Q = L= _— —0.14513 H
B~ s 5401 = s 2750
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3. Convert Lgy and Ly in per unit

0.9
dd = Xd = G733y — 2078 pu
0.1083
‘= oaza 0B

In per unit, in the EMFL per unit system, Eq. (3) can be used. Hence :

Ldf = de — [_g = 2.078 — 0.25 = 1.828 pu (6)

Remarks

e Eq. (6) does not hold true in Henry :
Log—Le =2.8651073-3.447107% =2520310 3 H # L4 =2.58610"2H

@ in the EMFL per unit system, Lyy and Ly have comparable values
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Dynamic equivalent circuits of the synchronous machine

In the EMFL per unit system, the Park inductance matrices take on the simplified
form:

Ly + My My My
Ly = My Lo + My My
My Mg Leg1 + My
Lo+ M, My, My, i
Lg= Mq Lig, + Mg Mq
M, My Ligp+ M, |

For symmetry reasons, same leakage inductance Ly in d and g windings



Dynamics of the synchronous machine Dynamic equivalent circuits of the synchronous machine

3 Le
Zg:%+1f+rd1lr Rdl Rf
S g boia is
v | L L
sla(s) | bt &
| T s
[ZRUR] R ! Le
" ——T
Iq 4;» Iql + Iq2 T qu ng
M, % bio [V e
. ‘ L L
s [q(S) 3 £ql g2
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Modelling of material saturation

Saturation of magnetic material modifies:
@ the machine inductances
o the initial operating point (in particular the rotor position)

@ the field current required to obtain a given stator voltage.

Notation

@ parameters with the upperscript “ refer to unsaturated values

@ parameters without this upperscript refer to saturated values.
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Dynamics of the synchronous machine = Modelling of material saturation

Open-circuit magnetic characteristic

Machine operating at no load, rotating at nominal angular speed wy.
Terminal voltage E; measured for various values of the field current ir.

E, B .
S OA O'A
o Al saturation factor : k= —=—- <1
ﬂ[:{z,‘bf’ 7A OB O'A
e 1
Mg a standard model : k= ——— m,n>0
. 1+ m(Eq)"
characteristic in d axis (field due to ir only)
0 7f
. wnlarir  wnlarls . wn Lar Lgg — Le .
In per unit: E, = = ifpy = V3lg if
P \/§ Vi \/§ Vi P \/g Vi Lar -
WN . .
- 78(de - LE)/fpu - Mdpu’fpu

Dropping the p, notation and introducing k:
Eq = Mdif = k Mslf 28/38



Dynamics of the synchronous machine = Modelling of material saturation
Leakage and air gap flux

The flux linkage in the d winding is decomposed into:

Vg = Lyig + Yad

Loig: leakage flux, not subject to saturation (path mainly in the air)
1,q: direct-axis component of the air gap flux, subject to saturation.

Expression of 1,4:

Yad = Vg — Leig = Ma(ia + ir + ia1)

Expression of 1,4:

1/’aq =g — Lfiq = Mq(iq + g1 + iq2)

Considering that the d and g axes are orthogonal, the air gap flux is given by:

wag Y/ gd + wgq (7)
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Saturation characteristic in loaded conditions

@ Saturation is different in the d and g axes, especially for a salient pole
machine (air gap larger in g axis !). Hence, different saturation factors (say,
kg and kg) should be considered

@ in practice, however, it is quite common to have only the direct-axis
saturation characteristic

@ in this case, the characteristic is used along any axis (not just d) as follows

@ in no-load conditions, we have

Yad = Mgis and 1aq =0 = s = Myis
Mg _ Mg _ Mg
L+ m(Eg)" 14+ m(Mgie)" 1+ m(tag)"

@ it is assumed that this relation still holds true with the combined air gap flux
Yag given by (7).

My = kMY =
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Summary: complete model (variables in per unit)

Vg = Lpig +ag Vg = Lpig+1ag
Yr = Lorie 4+ aq Y1 = Legrigt + Yaq
Va1 = Legrigr + Yad Y = Legigz + Yag
Vadg = Mg(ig + ir + ig1) Vag = Mg(ig + ig1 + iq)
My e
My = . n Mq = I n
L m (102, + %) L m (/02 +02)
. dipg . dip
va = —Ralg—wipg— g Vg = —Ryig+wipg — th
d . d .
Ed]f = vr— Rsif qul = —Rgqllql
d . d .
E%ﬂ = —Rain quQ = —Rpip
d . . 1 d
2H—w = Ty~ (Yaiqg — Yqid) ——0, = w

dt wp dt
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Model simplifications

Constant rotor speed approximation 6, ~ wy (w=1 pu)

Examples showing that 0, does not depart much from the nominal value wy :

@ oscillation of 8, with a magnitude of 90° and period of 1 second superposed
to the uniform motion at synchronous speed:

0, =07 4+ 2nfyt + gsin 21t = 0, = 1007 + 72 cos 27t ~ 314 + 10 cos 2t

at its maximum, it deviates from nominal by 10/314 = 3 % only.

@ in a large interconnected system, after primary frequency control, frequency
settles at f # fy. |f — fy| = 0.1 Hz is already a large deviation. In this case,
machine speeds deviate from nominal by 0.1/50 = 0.2 % only.

© a small isolated system may experience larger frequency deviations. But even
for |f — fy| = 1 Hz, the machine speeds deviate from nominal by 1/50 =2 %
only.
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The phasor (or quasi-sinusoidal) approximation

@ Underlies a large class of power system dynamic simulators
@ considered in detail in the following lectures
o for the synchronous machine, it consists of neglecting the “transformer

wd

voltages" —— ¢ and in the stator Park equations

d
@ this leads to neglectlng some fast varying components of the network

response, and allows the voltage and currents to be treated as a sinusoidal
with time-varying amplitudes and phase angles (hence the name)
@ at the same time, three-phase balance is also assumed.

Thus, the stator Park equations become (in per unit, with w = 1):

Va = —Raig—1q
Vg = —Rig+g

and 14 and 14 are now algebraic, instead of differential, variables.

Hence, they may undergo a discontinuity after of a network disturbance.
33/38



Dynamics of the synchronous machine = The “classical’ model of the synchronous machine

The “classical’” model of the synchronous machine

Very simplified model used :
@ in some analytical developments
@ in qualitative reasoning dealing with transient (angle) stability
o for fast assessment of transient (angle) stability.

“Classical” refers to a model used when there was little computational power.
Approximation # 0. We consider the phasor approximation.

Approximation # 1. The damper windings d; et g» are ignored.
@ The damping of rotor oscillations is going to be underestimated.

Approximation # 2. The stator resistance R, is neglected.
@ This is very acceptable.

The stator Park equations become :

Vi = —Yq= —Lgqgiqg — Lggiicy
Ya = Laqiq + Larir

Vq
34 /38



Dynamics of the synchronous machine = The “classical’ model of the synchronous machine

Expressing ir (resp. ig1) as function of ¢¢ and iy (resp. ¥q1 and iy) :

. ) . Ur— Larig
v = Lgig+ Larig = i = —
ff
. . . Paq1 — Lgg1i
wa = quql Iq1 + qullql = lg1 = %
qlql
and introducing into the stator Park equations :
Lot Lgq1 .
vg = *(qu’qu )’q*qu hqr = —Xg ig + € (8)
qlql qlql
Ly e
L2 ,
vg = (Lad— TF) ‘*‘71/%“ =X Id + € 9)
— \\/-/
L, 4

! !
eq and e
@ are called the e.m.f. behind transient reactances

@ are proportional to magnetic fluxes; hence, they cannot vary much after a
disturbance, unlike the rotor currents ir and iq;.
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Dynamics of the synchronous machine = The “classical’ model of the synchronous machine

Approximation # 3. The e.m.f. €/ and eé, are assumed constant.
@ This is valid over no more than - say - one second after a disturbance;
@ over this interval, a single rotor oscillation can take place; hence, damping
cannot show its effect (i.e. Approximation # 1 is not a concern).

Equations (8, 9) are similar to the Park equations in steady state, except for the
presence of an e.m.f. in the d axis, and the replacement of the synchronous by the
transient reactances.

Approximation # 4. The transient reactance is the same in both axes : X}, = X.
@ Questionable, but experiences shows that Xé has less impact ...

If Xj = X;, Eqs. (8, 9) can be combined in a single phasor equation, with the
corresponding equivalent circuit:
X -

NI B

V + X, T=E =FE/§ Efs V=vio
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Dynamics of the synchronous machine = The “classical’ model of the synchronous machine

Rotor motion. This is the only dynamics left !

e/, and e, are constant. Hence, E' is fixed with respect to d and q axes,
and ¢ differs from 6, by a constant.

1 d 1 d
Therefore, — 0, =w can be rewritten as : ——f=w
wp dt wp dt

The rotor motion equation:

d
HL =T, —T.
dc”

is transformed to involve powers instead of torques. Multiplying by w:

2Hwiw:me7wTe
dt

w T,, = mechanical power P, of the turbine
dw, .
wTe = proys = pr(t) + pus + Tms ~ P (active power produced)
since we assume three-phase balanced AC operation, and R, is neglected
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Dynamics of the synchronous machine = The “classical’ model of the synchronous machine

Approximation # 5. We assume w ~ 1 and replace 2Hw by 2H
@ very acceptable, already justified.

Thus we have:

d
2H o= P — P

where P can be derived from the equivalent circuit:

!

4 sin(d — 0)

P==
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