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Dynamics of the synchronous machine Time constants and characteristic inductances

Time constants and characteristic inductances

Objective

define accurately a number of time constants and inductances characterizing
the machine electromagnetic transients

use these expressions to derive from measurements the inductances and
resistances of the Park model

Assumption

As we focus on electromagnetic transients, the rotor speed θ̇ is assumed constant,
since it varies much more slowly.
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Dynamics of the synchronous machine Time constants and characteristic inductances

Laplace transform of Park equations

 Vd (s) + θ̇rψq(s)
−Vf (s)

0

 = −

 Ra + sLdd sLdf sLdd1

sLdf Rf + sLff sLfd1

sLdd1 sLfd1 Rd1 + sLd1d1


︸ ︷︷ ︸

Rd + sLd

 Id (s)
If (s)
Id1 (s)



+Ld

 id (0)
if (0)
id1 (0)


 Vq(s)− θ̇rψd (s)

0
0

 = −

 Ra + sLqq sLqq1 sLqq2

sLqq1 Rq1 + sLq1q1 sLq1q2

sLqq2 sLq1q2 Rq2 + sLq2q2


︸ ︷︷ ︸

Rq + sLq

 Iq(s)
Iq1 (s)
Iq2 (s)



+Lq

 iq(0)
iq1 (0)
iq2 (0)


3 / 38



Dynamics of the synchronous machine Time constants and characteristic inductances

Time constants and inductances

Eliminating If , Id1 , Iq1 and Iq2 yields:

Vd (s) + θ̇rψq(s) = −Zd (s)Id (s) + sG (s)Vf (s)

Vq(s)− θ̇rψd (s) = −Zq(s)Iq(s)

where :

Zd (s) = Ra + sLdd −
[
sLdf sLdd1

] [ Rf + sLff sLfd1

sLfd1 Rd1 + sLd1d1

]−1 [
sLdf

sLdd1

]
= Ra + s`d (s) `d (s) : d-axis operational inductance

Zq(s) = Ra + sLqq −
[
sLqq1 sLqq2

] [ Rq1 + sLq1q1 sLq1q2

sLq1q2 Rq2 + sLq2q2

]−1 [
sLqq1

sLqq2

]
= Ra + s`q(s) `q(s) : q-axis operational inductance
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Dynamics of the synchronous machine Time constants and characteristic inductances

Considering the nature of RL circuits, `d (s) and `q(s) can be factorized into:

`d (s) = Ldd
(1 + sT

′

d )(1 + sT
′′

d )

(1 + sT
′
d0)(1 + sT

′′
d0)

with 0 < T
′′

d < T
′′

d0 < T
′

d < T
′

d0

`q(s) = Lqq

(1 + sT
′

q)(1 + sT
′′

q )

(1 + sT
′
q0)(1 + sT

′′
q0)

with 0 < T
′′

q < T
′′

q0 < T
′

q < T
′

q0

Limit values:

lim
s→0

`d (s) = Ldd d-axis synchronous inductance

lim
s→∞

`d (s) = L
′′

d = Ldd
T

′

d T
′′

d

T
′
d0 T

′′
d0

d-axis subtransient inductance

lim
s→0

`q(s) = Lqq q-axis synchronous inductance

lim
s→∞

`q(s) = L
′′

q = Lqq

T
′

q T
′′

q

T
′
q0 T

′′
q0

q-axis subtransient inductance
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Dynamics of the synchronous machine Time constants and characteristic inductances

Direct derivation of L
′′

d :

elimin. of f and d1

Rd + sLd −→ Ra + s`d (s)

s →∞ ↓ ↓ s →∞

sLd −→ sL
′′

d

elimin. of f and d1

L
′′

d = Ldd −
[
Ldf Ldd1

] [ Lff Lfd1

Lfd1 Ld1d1

]−1 [
Ldf

Ldd1

]
= Ldd −

L2
df Ld1d1 + Lff L

2
dd1
− 2Ldf Lfd1Ldd1

Lff Ld1d1 − L2
fd1

and similarly for the q axis.
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Dynamics of the synchronous machine Time constants and characteristic inductances

Transient inductances

If damper winding effects are neglected, the operational inductances simplify into :

`d (s) = Ldd
1 + sT

′

d

1 + sT
′
d0

`q(s) = Lqq

1 + sT
′

q

1 + sT
′
q0

and the limit values become :

lim
s→∞

`d (s) = L
′

d = Ldd
T

′

d

T
′
d0

d-axis transient inductance

lim
s→∞

`q(s) = L
′

q = Lqq

T
′

q

T
′
q0

q-axis transient inductance

Using the same derivation as for L
′′

d , one easily gets:

L
′

d = Ldd −
L2

df

Lff
L

′

q = Lqq −
L2

qq1

Lq1q1
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Dynamics of the synchronous machine Time constants and characteristic inductances

Typical values

machine with machine with
round rotor salient poles round rotor salient poles

(pu) (pu) (s) (s)

Ld 1.5-2.5 0.9-1.5 T
′

d0 8.0-12.0 3.0-8.0

Lq 1.5-2.5 0.5-1.1 T
′

d 0.95-1.30 1.0-2.5

L
′

d 0.2-0.4 0.3-0.5 T
′′

d0 0.025-0.065 0.025-0.065

L
′

q 0.2-0.4 T
′′

d 0.02-0.05 0.02-0.05

L
′′

d 0.15-0.30 0.25-0.35 T
′

q0 2.0

L
′′

q 0.15-0.30 0.25-0.35 T
′

q 0.8

T
′′

q0 0.20-0.50 0.04-0.15

T
′′

q 0.02-0.05 0.02-0.05
Tα 0.02-0.60 0.02-0.20

inductances in per unit on the machine nominal voltage and apparent power
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Dynamics of the synchronous machine Time constants and characteristic inductances

Comments

in the direct axis: pronounced “time decoupling”:

T
′

d0 � T
′′

d0 T
′

d � T
′′

d

subtransient time constants T
′′
d and T

′′
d0: short, originate from damper winding

transient time constants T
′
d and T

′
d0: long, originate from field winding

in the quadrature axis: less pronounced time decoupling

because the windings are of quite different nature !

salient-pole machines: single winding in q axis ⇒ the parameters L
′

q,T
′

q and

T
′

q0 do not exist.
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Dynamics of the synchronous machine Rotor motion

Rotor motion

θm angular position of rotor, i.e. angle between one axis attached to the rotor
and one attached to the stator. Linked to “electrical” angle θr through:

θr = p θm p number of pairs of poles

ωm mechanical angular speed: ωm =
d

dt
θm

ω electrical angular speed: ω =
d

dt
θr = pωm

Basic equation of rotating masses (friction torque neglected):

I
d

dt
ωm = Tm − Te

I moment of inertia of all rotating masses

Tm mechanical torque provided by prime mover (turbine, diesel motor, etc.)

Te electromagnetic torque developed by synchronous machine
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Dynamics of the synchronous machine Rotor motion

Motion equation expressed in terms of ω:

I

p

d

dt
ω = Tm − Te

Dividing by the base torque TB = SB/ωmB :

IωmB

pSB

d

dt
ω = Tmpu − Tepu

Defining the speed in per unit:

ωpu =
ω

ωN
=

1

ωN

d

dt
θr

and taking ωmB = ωB/p = ωN/p, the motion equation becomes:

Iω2
mB

SB

d

dt
ωpu = Tmpu − Tepu

Defining the inertia constant:

H =
1
2 Iω

2
mB

SB

the motion equation is rewritten as:

2H
d

dt
ωpu = Tmpu − Tepu
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Dynamics of the synchronous machine Rotor motion

Inertia constant H

called specific energy

ratio kinetic energy of rotating masses at nominal speed
apparent nominal power of machine

has dimension of a time

with values in rather narrow interval, whatever the machine power.

H
thermal plant hydro plant

p = 1 : 2 − 4 s 1.5 − 3 s
p = 2 : 3 − 7 s
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Dynamics of the synchronous machine Rotor motion

Relationship between H and launching time tl

tl : time to reach the nominal angular speed ωmB when applying to the rotor,
initially at rest, the nominal mechanical torque:

TN =
PN

ωmB
=

SB cosφN

ωmB

PN : turbine nominal power (in MW) cosφN : nominal power factor

Nominal mechanical torque in per unit: TNpu =
TN

TB
= cosφN

Uniformly accelerated motion: ωmpu = ωmpu(0) +
cosφN

2H
t =

cosφN

2H
t

At t = tl , ωmpu = 1 ⇒ tl =
2H

cosφN

Remark. Some define tl with reference to TB , not TN . In this case, tl = 2H.
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Dynamics of the synchronous machine Rotor motion

Compensated motion equation

In some simplified models, the damper windings are neglected.
To compensate for the neglected damping torque, a correction term can be added:

2H
d

dt
ωpu + D(ωpu − ωsys) = Tmpu − Tepu D ≥ 0

where ωsys is the system angular frequency (which will be defined in “Power
system dynamic modelling under the phasor approximation”).

Expression of electromagnetic torque

Te = p(ψd iq − ψq id )

Using the base defined in slide # 16 :

Tepu =
Te

TB
=
ωmB

SB
p(ψd iq − ψq id ) =

ωB√
3VB

√
3IB

(ψd iq − ψq id )

=
ψd
√

3VB

ωB

iq√
3IB
− ψq
√

3VB

ωB

id√
3IB

= ψdpu iqpu − ψqpu idpu

In per unit, the factor p disappears.
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Dynamics of the synchronous machine Per unit system for the synchronous machine model

Per unit system for the synchronous machine model

Recall on per unit systems

Consider two magnetically coupled coils with:

ψ1 = L11i1 + L12i2 ψ2 = L21i1 + L22i2

For simplicity, we take the same time base in both circuits: t1B = t2B

In per unit: ψ1pu =
ψ1

ψ1B
=

L11

L1B

i1
I1B

+
L12

L1B

i2
I1B

= L11pu i1pu +
L12I2B

L1B I1B
i2pu

ψ2pu =
ψ2

ψ2B
=

L21I1B

L2B I2B
i1pu + L22pu i2pu

In Henry, one has L12 = L21. We request to have the same in per unit:

L12pu = L21pu ⇔ I2B

L1B I1B
=

I1B

L2B I2B
⇔ S1B t1B = S2B t2B ⇔ S1B = S2B

A per unit system with t1B = t2B and S1B = S2B is called reciprocal
15 / 38



Dynamics of the synchronous machine Per unit system for the synchronous machine model

in the single phase in each in each rotor
circuit equivalent to of the d , q winding,

stator windings windings for instance f

time tB =
1

ωN
=

1

2πfN

power SB = nominal apparent 3-phase

voltage VB : nominal (rms)
√

3VB VfB : to be chosen
phase-neutral

current IB =
SB

3VB

√
3IB

SB

VfB

impedance ZB =
3V 2

B

SB

3V 2
B

SB

V 2
fB

SB

flux VBtB

√
3VBtB VfBtB
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Dynamics of the synchronous machine Per unit system for the synchronous machine model

The equal-mutual-flux-linkage per unit system

For two magnetically coupled coils, it is shown that (see theory of transformer):

L11 − L`1 =
n2

1

R
L12 =

n1n2

R

L22 − L`2 =
n2

2

R

L11 self-inductance of coil 1

L22 self-inductance of coil 1

L`1 leakage inductance of coil 1

L`2 leakage inductance of coil 2

n1 number of turns of coil 1

n2 number of turns of coil 2

R reluctance of the magnetic circuit followed by the magnetic field lines which
cross both windings; the field is created by i1 and i2.
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Dynamics of the synchronous machine Per unit system for the synchronous machine model

Assume we choose V1B and V2B such that:

V1B

V2B
=

n1

n2

In order to have the same base power in both circuits:

V1B I1B = V2B I2B ⇒ I1B

I2B
=

n2

n1

We have:

(L11 − L`1)I1B =
n2

1

R
I1B =

n2
1

R
n2

n1
I2B =

n1n2

R
I2B = L12I2B (1)

The flux created by I2B in coil 1 is equal to the flux created by I1B in the same
coil 1, after removing the part that corresponds to leakages.

Similarly in coil 2:

(L22 − L`2)I2B =
n2

2

R
I2B =

n2
2

R
n1

n2
I1B =

n1n2

R
I1B = L12I1B (2)

This per unit system is said to yield equal mutual flux linkages (EMFL)
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Dynamics of the synchronous machine Per unit system for the synchronous machine model

Alternative definition of base currents

From respectively (1) and (2) :

I1B

I2B
=

L12

L11 − L`1

I1B

I2B
=

L22 − L`2
L12

A property of this pu system

L12pu =
L12I2B

L1B I1B
=

(L11 − L`1)

L1B
= L11pu − L`1pu (3)

L21pu =
L21I1B

L2B I2B
=

(L22 − L`2)

L2B
= L22pu − L`2pu

In this pu system, self-inductance = mutual inductance + leakage reactance.
Does not hold true for inductances in Henry !

The inductance matrix of the two coils takes on the form:

L =

[
L11 L12

L12 L22

]
=

[
L`1 + M M

M L`2 + M

]
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Dynamics of the synchronous machine Per unit system for the synchronous machine model

Application to synchronous machine

we have to choose a base voltage (or current) in each rotor winding.
Let’s first consider the field winding f (1 ≡ f , 2 ≡ d)

we would like to use the EMFL per unit system

we do not know the “number of turns” of the equivalent circuits f , d , etc.

instead, we can use one of the alternative definitions of base currents:

IfB√
3IB

=
Ldd − L`

Ldf
⇒ IfB =

√
3IB

Ldd − L`
Ldf

(4)

Ldd , L` can be measured
Ldf can be obtained by measuring the no-load voltage Eq produced by a
known field current if :

Eq =
ωNLdf√

3
if ⇒ Ldf =

√
3Eq

ωN if
(5)

the base voltage is obtained from VfB =
SB

IfB
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Dynamics of the synchronous machine Per unit system for the synchronous machine model

What about the other rotor windings ?

one cannot access the d1, q1 and q2 windings to measure Ldd1, Lqq1 et Lqq2

using formulae similar to (5)

it can be assumed that there exist base currents Id1B , Iq1B et Iq2B leading to
the EMFL per unit system, but their values are not known

hence, we cannot compute voltages in Volt or currents in Ampere in those
windings (only in pu)

not a big issue in so far as we do not have to connect anything to those
windings (unlike the excitation system to the field winding). . .
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Dynamics of the synchronous machine Numerical example

Numerical example

A machine has the following characteristics:

nominal frequency: 50 Hz

nominal apparent power: 1330 MVA

stator nominal voltage: 24 kV

Xd = 0.9 Ω X` = 0.1083 Ω

field current giving the nominal stator voltage at no-load (and nominal
frequency): 2954 A

1. Base power, voltage, impedance, inductance and current at the stator

SB = 1 330 MVA

UB = 24 000 V VB =
24 000√

3
= 13 856 V

ZB =
3 V 2

B

SB
= 0.4311 Ω ⇒ LB =

ZB

ωB
=

ZB

ωN
=

ZB

2 π 50
= 1.378 10−3 H

IB =
SB

3 VB
=

1 330 106

3 13 856
= 31 998 A
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Dynamics of the synchronous machine Numerical example

2. Base power, current, voltage, impedance and induct. in field winding

SfB = SB = 1 330 MVA

Ldf =

√
3 Eq

ωN if
=

√
3 (24/

√
3) 103

2 π 50 2 954
= 2.586 10−2 H

Ldd =
Xd

ωN
=

0.9

2 π 50
= 2.865 10−3 H

L` =
X`
ωN

=
0.1083

2 π 50
= 3.447 10−4 H

Using Eq. (4) : IfB =
√

3 IB
Ldd − L`

Ldf
= 5 401 A

VfB =
SfB

IfB
=

1 330 106

5 401
= 246 251 V

A huge value ! This is to be expected since we use the machine nominal power SB

in the field winding, which is not designed to carry such a high power !

ZfB =
VfB

IfB
=

246 251

5 401
= 45.594 Ω ⇒ LfB =

ZfB

ωB
=

45.594

2 π 50
= 0.14513 H
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Dynamics of the synchronous machine Numerical example

3. Convert Ldd and Ldf in per unit

Ldd = Xd =
0.9

0.4331
= 2.078 pu

L` =
0.1083

0.4331
= 0.25 pu

In per unit, in the EMFL per unit system, Eq. (3) can be used. Hence :

Ldf = Ldd − L` = 2.078− 0.25 = 1.828 pu (6)

Remarks

Eq. (6) does not hold true in Henry :

Ldd−L` = 2.865 10−3−3.447 10−4 = 2.5203 10−3 H 6= Ldf = 2.586 10−2 H

in the EMFL per unit system, Ldd and Ldf have comparable values
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Dynamics of the synchronous machine Dynamic equivalent circuits of the synchronous machine

Dynamic equivalent circuits of the synchronous machine

In the EMFL per unit system, the Park inductance matrices take on the simplified
form:

Ld =

 L` + Md Md Md

Md L`f + Md Md

Md Md L`d1 + Md


Lq =

 L` + Mq Mq Mq

Mq L`q1 + Mq Mq

Mq Mq L`q2 + Mq


For symmetry reasons, same leakage inductance L` in d and q windings

25 / 38



Dynamics of the synchronous machine Dynamic equivalent circuits of the synchronous machine
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Dynamics of the synchronous machine Modelling of material saturation

Modelling of material saturation

Saturation of magnetic material modifies:

the machine inductances

the initial operating point (in particular the rotor position)

the field current required to obtain a given stator voltage.

Notation

parameters with the upperscript u refer to unsaturated values

parameters without this upperscript refer to saturated values.
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Dynamics of the synchronous machine Modelling of material saturation

Open-circuit magnetic characteristic

Machine operating at no load, rotating at nominal angular speed ωN .
Terminal voltage Eq measured for various values of the field current if .

saturation factor : k =
OA

OB
=

O ′A′

O ′A
< 1

a standard model : k =
1

1 + m(Eq)n
m, n > 0

characteristic in d axis (field due to if only)

In per unit: Eqpu =
ωNLdf if√

3 VB

=
ωNLdf IfB√

3 VB

ifpu =
ωNLdf√

3 VB

√
3IB

Ldd − L`
Ldf

ifpu

=
ωN

ZB
(Ldd − L`)ifpu = Mdpu ifpu

Dropping the pu notation and introducing k :

Eq = Md if = k Mu
d if 28 / 38



Dynamics of the synchronous machine Modelling of material saturation

Leakage and air gap flux

The flux linkage in the d winding is decomposed into:

ψd = L`id + ψad

L`id : leakage flux, not subject to saturation (path mainly in the air)

ψad : direct-axis component of the air gap flux, subject to saturation.

Expression of ψad :

ψad = ψd − L`id = Md (id + if + id1)

Expression of ψaq:

ψaq = ψq − L`iq = Mq(iq + iq1 + iq2)

Considering that the d and q axes are orthogonal, the air gap flux is given by:

ψag =
√
ψ2

ad + ψ2
aq (7)
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Dynamics of the synchronous machine Modelling of material saturation

Saturation characteristic in loaded conditions

Saturation is different in the d and q axes, especially for a salient pole
machine (air gap larger in q axis !). Hence, different saturation factors (say,
kd and kq) should be considered

in practice, however, it is quite common to have only the direct-axis
saturation characteristic

in this case, the characteristic is used along any axis (not just d) as follows

in no-load conditions, we have

ψad = Md if and ψaq = 0 ⇒ ψag = Md if

Md = kMu
d =

Mu
d

1 + m(Eq)n
=

Mu
d

1 + m(Md if )n
=

Mu
d

1 + m(ψag )n

it is assumed that this relation still holds true with the combined air gap flux
ψag given by (7).
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Dynamics of the synchronous machine Summary: complete model

Summary: complete model (variables in per unit)

ψd = L`id + ψad

ψf = L`f if + ψad

ψd1 = L`d1id1 + ψad

ψad = Md (id + if + id1)

Md =
Mu

d

1 + m
(√

ψ2
ad + ψ2

aq

)n

vd = −Raid − ωψq −
dψd

dt

d

dt
ψf = vf − Rf if

d

dt
ψd1 = −Rd1id1

2H
d

dt
ω = Tm − (ψd iq − ψq id )

ψq = L`iq + ψaq

ψq1 = L`q1iq1 + ψaq

ψq2 = L`q2iq2 + ψaq

ψaq = Mq(iq + iq1 + iq2)

Mq =
Mu

q

1 + m
(√

ψ2
ad + ψ2

aq

)n

vq = −Raiq + ωψd −
dψq

dt

d

dt
ψq1 = −Rq1iq1

d

dt
ψq2 = −Rq2iq2

1

ωN

d

dt
θr = ω
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Dynamics of the synchronous machine Model simplifications

Model simplifications

Constant rotor speed approximation θ̇r ' ωN (ω = 1 pu)

Examples showing that θ̇r does not depart much from the nominal value ωN :

1 oscillation of θr with a magnitude of 90o and period of 1 second superposed
to the uniform motion at synchronous speed:

θr = θo
r + 2πfNt +

π

2
sin 2πt ⇒ θ̇r = 100π + π2 cos 2πt ' 314 + 10 cos 2πt

at its maximum, it deviates from nominal by 10/314 = 3 % only.

2 in a large interconnected system, after primary frequency control, frequency
settles at f 6= fN . |f − fN | = 0.1 Hz is already a large deviation. In this case,
machine speeds deviate from nominal by 0.1/50 = 0.2 % only.

3 a small isolated system may experience larger frequency deviations. But even
for |f − fN | = 1 Hz, the machine speeds deviate from nominal by 1/50 = 2 %
only.
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Dynamics of the synchronous machine Model simplifications

The phasor (or quasi-sinusoidal) approximation

Underlies a large class of power system dynamic simulators

considered in detail in the following lectures

for the synchronous machine, it consists of neglecting the “transformer

voltages”
dψd

dt
and

dψd

dt
in the stator Park equations

this leads to neglecting some fast varying components of the network
response, and allows the voltage and currents to be treated as a sinusoidal
with time-varying amplitudes and phase angles (hence the name)

at the same time, three-phase balance is also assumed.

Thus, the stator Park equations become (in per unit, with ω = 1):

vd = −Raid − ψq

vq = −Raiq + ψd

and ψd and ψq are now algebraic, instead of differential, variables.

Hence, they may undergo a discontinuity after of a network disturbance.
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Dynamics of the synchronous machine The “classical” model of the synchronous machine

The “classical” model of the synchronous machine

Very simplified model used :
in some analytical developments
in qualitative reasoning dealing with transient (angle) stability
for fast assessment of transient (angle) stability.

“Classical” refers to a model used when there was little computational power.

Approximation # 0. We consider the phasor approximation.

Approximation # 1. The damper windings d1 et q2 are ignored.

The damping of rotor oscillations is going to be underestimated.

Approximation # 2. The stator resistance Ra is neglected.

This is very acceptable.

The stator Park equations become :

vd = −ψq = −Lqq iq − Lqq1 iq1

vq = ψd = Ldd id + Ldf if
34 / 38



Dynamics of the synchronous machine The “classical” model of the synchronous machine

Expressing if (resp. iq1) as function of ψf and id (resp. ψq1 and iq) :

ψf = Lff if + Ldf id ⇒ if =
ψf − Ldf id

Lff

ψq1 = Lq1q1iq1 + Lqq1iq1 ⇒ iq1 =
ψq1 − Lqq1iq

Lq1q1

and introducing into the stator Park equations :

vd = − (Lqq −
L2

qq1

Lq1q1
)︸ ︷︷ ︸

L′
q

iq −
Lqq1

Lq1q1
ψq1︸ ︷︷ ︸

e′
d

= −X ′q iq + e′d (8)

vq = (Ldd −
L2

df

Lff
)︸ ︷︷ ︸

L′
d

id +
Ldf

Lff
ψf︸ ︷︷ ︸

e′
q

= X ′d id + e′q (9)

e′d and e′q :

are called the e.m.f. behind transient reactances

are proportional to magnetic fluxes; hence, they cannot vary much after a
disturbance, unlike the rotor currents if and iq1.
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Approximation # 3. The e.m.f. e′d and e′q are assumed constant.
This is valid over no more than - say - one second after a disturbance;
over this interval, a single rotor oscillation can take place; hence, damping
cannot show its effect (i.e. Approximation # 1 is not a concern).

Equations (8, 9) are similar to the Park equations in steady state, except for the
presence of an e.m.f. in the d axis, and the replacement of the synchronous by the
transient reactances.

Approximation # 4. The transient reactance is the same in both axes : X ′d = X ′q.
Questionable, but experiences shows that X ′q has less impact . . .

If X ′d = X ′q, Eqs. (8, 9) can be combined in a single phasor equation, with the
corresponding equivalent circuit:

V̄ + jX ′d Ī = Ē ′ = E ′∠δ
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Rotor motion. This is the only dynamics left !

e′d and e′q are constant. Hence, Ē ′ is fixed with respect to d and q axes,
and δ differs from θr by a constant.

Therefore,
1

ωN

d

dt
θr = ω can be rewritten as :

1

ωN

d

dt
δ = ω

The rotor motion equation:

2H
d

dt
ω = Tm − Te

is transformed to involve powers instead of torques. Multiplying by ω:

2H ω
d

dt
ω = ωTm − ωTe

ωTm = mechanical power Pm of the turbine

ωTe = pr→s = pT (t) + pJs +
dWms

dt
' P (active power produced)

since we assume three-phase balanced AC operation, and Ra is neglected
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Approximation # 5. We assume ω ' 1 and replace 2Hω by 2H

very acceptable, already justified.

Thus we have:

2H
d

dt
ω = Pm − P

where P can be derived from the equivalent circuit:

P =
E ′V

X ′
sin(δ − θ)
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