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Brief recall

Brief recall

Induction or asynchronous machine

motor widely used in industry, tertiary sector, etc.

sometimes also as small generator
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Brief recall

Principle of operation

Stator:

three-phrase windings carrying three-phase currents of angular frequency ωs

produces a magnetic field rotating at angular speed ωs

a single pair of poles is assumed for simplicity.

Rotor:

rotates at a speed ωr 6= ωs characterized by the motor slip :

s =
ωs − ωr

ωs

can be modeled with a set of three-phase windings

currents induced in these windings have angular frequency ωs − ωr = sωs

and produce a magnetic field rotating at angular speed sωs with respect to
the rotor, i.e. sωs + ωr = ωs with respect to the stator.

Both rotating magnetic fields are fixed with respect to each other.

Their interaction creates the electromagnetic torque.
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Brief recall

Two types of machines: squirrel-cage and wound rotors

Squirrel-cage rotor

non insulated aluminum or copper bars inserted in slots, connected at their
ends to allow the currents to flow

simple construction, easy maintenance, reliable operation

possible presence of a second cage aimed at providing a larger starting torque
(non considered here).
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Brief recall

Wound rotor

the rotor carries insulated three-phase windings, which are accessed through
sliprings and brushes

used when the rotor circuits have to be accessed, e.g. to control

the starting torque (external resistance)
the starting current
the rotor speed

construction and maintenance are more expensive.
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Brief recall Modelling the induction machine

Modelling the induction machine

Motor sign convention at both stator and rotor.

va = Rs ia +
dψa

dt
vb = Rs ib +

dψb

dt
vc = Rs ic +

dψc

dt

0 = Rr iA +
dψA

dt
0 = Rr iB +

dψB

dt
0 = Rr iC +

dψC

dt

Rs : resistance of one stator circuit Rr : resistance of one rotor circuit

single pair of poles assumed for simplicity of notation
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Brief recall Park transformation, equations and inductance matrix

Park transformation, equations and inductance matrix

Several reference frames can be used, depending on the application

we use d and q reference axes which rotate at the angular speed ωs

both stator and rotor windings are transformed into this reference frame

this yields new, equivalent windings which are all fixed wrt each other.

ωr : rotor speed

original transformed relative
windings into speed

stator a, b, c ds, qs, os ωs

rotor A,B,C dr , qr , or ωs − ωr
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Brief recall Park transformation, equations and inductance matrix

By similarity with the derivations of the synchronous machine :

vds = Rs ids + ωsψqs +
dψds

dt

vqs = Rs iqs − ωsψds +
dψqs

dt

vos = Rs ios +
dψos

dt

0 = Rr idr + (ωs − ωr )ψqr +
dψdr

dt

0 = Rr iqr − (ωs − ωr )ψdr +
dψqr

dt

0 = Rr ior +
dψor

dt
ψds

ψqs

ψos

ψdr

ψqr

ψor

 =


Lss Lsr

Lss Lsr
Los

Lsr Lrr
Lsr Lrr

Lor




ids
iqs
ios
idr
iqr
ior


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Brief recall Park transformation, equations and inductance matrix

Typical values

Rs 0.01 - 0.12 pu Rr 0.01 - 0.13 pu
Lss − Lsr 0.07 - 0.15 pu Lrr − Lsr 0.06 - 0.18 pu
Lsr 1.8 - 3.8 pu

per unit values on the machine base

9 / 27



Brief recall Energy, power and torque

Energy, power and torque

Stator power balance

Instantaneous power entering the stator =

Joule losses in stator pJs
+ d/dt magnetic energy in stator windings Wms

+ power passing from stator to rotor ps→r (what type of power is it ?)

pT (t) = vaia + vb ib + vc ic = vds ids + vqs iqs + vos ios

= (Rs i
2
ds + Rs i

2
qs + Rs i

2
os) + (ids

dψds

dt
+ iqs

dψqs

dt
+ ios

dψos

dt
)

+ωs(ψqs ids − ψds iqs)

Hence:
ps→r = ωs(ψqs ids − ψds iqs) (1)
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Brief recall Energy, power and torque

Rotor power balance

Power passing from stator to rotor ps→r =

Joule losses in rotor pJr + d/dt magnetic energy in rotor windings Wmr

+ d/dt kinetic energy Wc + power transferred to the mechanical load Pm.

From the Park equations :

vdr idr + vqr iqr + vor ior = 0

(Rr i
2
dr +Rr i

2
qr +Rr i

2
or )+(idr

dψdr

dt
+iqr

dψqr

dt
+ior

dψor

dt
)+(ωs−ωr )(ψqr idr−ψdr iqr ) = 0

pJr +
dWmr

dt
= −(ωs − ωr )(ψqr idr − ψdr iqr )

Hence, the above rotor power balance equation can be rewritten as :

ps→r = −(ωs − ωr )(ψqr idr − ψdr iqr ) +
dWc

dt
+ Pm

Replacing ps→r by (1) and using the rotor motion equation :

(ωs − ωr )(ψqr idr − ψdr iqr ) + ωs(ψqs ids − ψds iqs) = ωrTe
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Brief recall Energy, power and torque

Expressions of torque

ψqs ids − ψds iqs = (Lss iqs + Lsr iqr )ids − (Lss ids + Lsr idr )iqs = Lsr (iqr ids − idr iqs)

ψqr idr − ψdr iqr = (Lrr iqr + Lsr iqs)idr − (Lrr idr + Lsr ids)iqr = Lsr (iqs idr − ids iqr )

= −(ψqs ids − ψds iqs)

Hence :

Te = ψqs ids − ψds iqs = ψdr iqr − ψqr idr = Lsr (iqr ids − idr iqs).

Remarks

The above derivation shows that ps→r = ωsTe

ps→r is both of electromagnetic and mechanical nature

the expression of Te looks very similar to that of the synchronous machine

but both machines behave quite differently

in particular, in the synchronous machine, ps→r is of mechanical nature only.
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Brief recall Rotor motion equation

Rotor motion equation

Following the same derivation as for the synchronous machine yields :

2H
d

dt
ωr = Te − Tm

where H is the inertia constant, in second
ωr , Te and Tm are in per unit
t is in second.

Mechanical torque Tm : varies with the rotor speed ωr

A common model is :

Tm = Tmo

(
Aω2

r + Bωr + C
)

with A + B + C = 1

where :

Tmo is the torque value at synchronous speed, i.e. when ωr = 1

A, B et C depend on the driven mechanical load.
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Brief recall Rotor motion equation

Typical inertia and torque parameters

component A B C H (s)
heat pump, air conditioning 0.2 0.0 0.8 0.28

refrigerator, freezer 0.2 0.0 0.8 0.28
dishwasher 1.0 0.0 0.0 0.28

clothes washer 1.0 0.0 0.0 1.50
clothes dryer 1.0 0.0 0.0 1.30

pumps, fans, other motors 1.0 0.0 0.0 0.70
small industrial motor 1.0 0.0 0.0 0.70
large industrial motor 1.0 0.0 0.0 1.50
power plant auxiliaries 1.0 0.0 0.0 1.50

agricultural water pump 1.0 0.0 0.0 0.4
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Brief recall Model under the phasor approximation

Model under the phasor approximation

Neglecting transformer voltages and dropping the “os” winding:

vds = Rs ids + ωsψqs (2)

vqs = Rs iqs − ωsψds (3)

The other equations are unchanged. Dropping the “or” winding:

dψdr

dt
= −Rr idr − (ωs − ωr )ψqr (4)

dψqr

dt
= −Rr iqr + (ωs − ωr )ψdr (5)

ψds = Lss ids + Lsr idr (6)

ψqs = Lss iqs + Lsr iqr (7)

ψdr = Lsr ids + Lrr idr (8)

ψqr = Lsr iqs + Lrr iqr (9)

2H
d

dt
ωr = ψdr iqr − ψqr idr − Tmo

(
Aω2

r + Bωr + C
)

(10)

Third-order model of the (single-cage) induction machine.
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Brief recall Simplified (first-order) model

Simplified (first-order) model

Rotor windings contribute with fast transients

approximation: assume their dynamics infinitely fast, and set dψr/dt = 0

this yields a first-order model, with rotor motion as the only dynamics.

At the rotor:

0 = Rr idr + (ωs − ωr )ψqr = Rr idr + (ωs − ωr )Lrr iqr + (ωs − ωr )Lsr iqs

0 = Rr iqr − (ωs − ωr )ψdr = Rr idr − (ωs − ωr )Lrr idr − (ωs − ωr )Lsr ids

Dividing by
ωs − ωr

ωs
:

0 =
ωsRr

ωs − ωr
idr + ωsLrr iqr + ωsLsr iqs (11)

0 =
ωsRr

ωs − ωr
iqr − ωsLrr idr − ωsLsr ids (12)

ωs − ωr

ωs
is the rotor slip with respect to ωs .
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Brief recall Simplified (first-order) model

At the stator:

vds = Rs ids + ωs(Lss iqs + Lsr iqr ) (13)

vqs = Rs iqs − ωs(Lss ids + Lsr idr ) (14)

By analogy with the synchronous machine, one can interpret :

ids and iqs as projections on the (d , q) axes of a rotating vector representing
the current in phase a, with corresponding phasor Ī ;

idr and iqr as projections on (d , q) axes of a rotating vector representing the
current in one rotor winding, seen from stator, with corresponding phasor Īr .

Eqs. (11, 12) and (13, 14) can be combined into complex equations:

V = Rs I + jωsLss I + jωsLsr I r

0 =
ωs Rr

ωs − ωr
I r + jωsLrr I r + jωsLsr I
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Brief recall Simplified (first-order) model

This corresponds to the equivalent circuit :

in which :

the “electrical part” is static

ωr varies according to the rotor motion equation (10).
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Brief recall Simplified (first-order) model

Steady-state torque-slip characteristic

Motor powered under a stator voltage V̄

V̄e = V̄
jωsLsr

Rs + jωsLss

Re + jXe = jωs(Lrr − Lsr ) +
jωsLsr (Rs + jωs(Lss − Lsr ))

Rs + jωsLss
= jωsLrr +

ωsL
2
sr

Rs + jωsLss

ps→r =
Rr

s
I 2
r = ωsTe ⇒ Te =

1

ωs

Rr

s
I 2
r =

1

ωs

Rr

s

V 2
e

(Re + Rr

s )2 + X 2
e
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Brief recall Simplified (first-order) model

Example Large industrial motor :

Lss = 3.867, Lsr = 3.800, Lrr = 3.970,Rs = 0.013,Rr = 0.009 pu

Equilibrium points correspond to: Te = Tm A : stable B : unstable

Maximum torque Tmax
e proportional to V 2

e , and hence to V 2.
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Brief recall Simplified (first-order) model

Motor response to a step decrease of voltage V

Tm assumed constant (for simplicity; valid for small speed variations)

very first instants: inertia of rotating masses ⇒ motor slip unchanged
⇒ Rr/s unchanged ⇒ motor behaves as a constant admittance

soon after: Te < Tm ⇒ the motor decelerates ⇒ moves to equilibrium A’

at the new operating point :

ps→r = ωsTe = ωsTm

Conclusion:

the induction motor is a load which, after a voltage disturbance, restores an
internally consumed active power (ps→r ) to its pre-disturbance value

it does so rather fast: new equilibrium reached in less than 1 s typically

from system operator viewpoint: decreasing the network voltage does not
relieve the system in terms of load active power :-(

After a large enough voltage drop, Tmax
e < Tm : the motor stalls ⇒ s increases

⇒ I increases a lot ⇒ the motor is eventually tripped by its thermal protection
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Brief recall Simplified (first-order) model

Variations of motor active and reactive powers with
voltage and frequency

P =
Rm

R2
m + X 2

m

V 2 Q =
Xm

R2
m + X 2

m

V 2

Rm + jXm = Rs + jωs(Lss − Lsr ) +
jωsLsr (

Rr

s + jωs(Lrr − Lsr ))
Rr

s + jωsLrr

= Rs + jωsLss +
ω2
s L

2
sr

Rr

s + jωsLrr
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Brief recall Simplified (first-order) model

The motor slip s is given by the torque equilibrium condition:

Tm = Te ⇔ Tm =
1

ωs

Rr

s

V 2
e

(Re + Rr

s )2 + X 2
e

(15)

Procedure.

For a given set of (V , ωs ,Tm) values :

1 compute Ve , Re and Xe (see slide # 19)
2 solve (15) to obtain s

solve the equation with respect to
Rr

s
, treated as intermediate variable

from which s is easily obtained.

3 compute Rm and Xm (see slide # 22)

4 compute P and Q (see slide # 22).
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Brief recall Simplified (first-order) model

Variation of active power P with voltage V

Exercise: show that, if Rs is neglected, P is constant (down to the stalling point)
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Brief recall Simplified (first-order) model

Variation of active power P with angular frequency ωs (or frequency f )

Exercise: show that, if Rs is neglected, P varies linearly with f
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Brief recall Simplified (first-order) model

Variation of reactive power Q with voltage V

at high V values: power consumed in Lsr dominates; it varies quadratically with V
at low V values: power consumed in Lss − Lrr and Lrr − Lsr dominates
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Brief recall Simplified (first-order) model

Variation of reactive power Q with angular frequency ωs (or frequency f )

The slope is positive or negative, depending upon the mechanical load !

27 / 27


	Dynamics of the induction machine
	Brief recall
	Modelling the induction machine
	Park transformation, equations and inductance matrix
	Energy, power and torque
	Rotor motion equation
	Model under the phasor approximation
	Simplified (first-order) model


