ELEC0047 - Power system dynamics, control and stability

Dynamics of the induction machine

Thierry Van Cutsem
t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct

October 2019

Brief recall

Induction or asynchronous machine

- motor widely used in industry, tertiary sector, etc.
- sometimes also as small generator

Principle of operation

Stator:

- three-phrase windings carrying three-phase currents of angular frequency ω_{s}
- produces a magnetic field rotating at angular speed ω_{s}
- a single pair of poles is assumed for simplicity.

Rotor:

- rotates at a speed $\omega_{r} \neq \omega_{s}$ characterized by the motor slip :

$$
s=\frac{\omega_{s}-\omega_{r}}{\omega_{s}}
$$

- can be modeled with a set of three-phase windings
- currents induced in these windings have angular frequency $\omega_{s}-\omega_{r}=s \omega_{s}$
- and produce a magnetic field rotating at angular speed $s \omega_{s}$ with respect to the rotor, i.e. $\quad s \omega_{s}+\omega_{r}=\omega_{s}$ with respect to the stator.

Both rotating magnetic fields are fixed with respect to each other.
Their interaction creates the electromagnetic torque.

Two types of machines: squirrel-cage and wound rotors

Squirrel-cage rotor

- non insulated aluminum or copper bars inserted in slots, connected at their ends to allow the currents to flow
- simple construction, easy maintenance, reliable operation
- possible presence of a second cage aimed at providing a larger starting torque (non considered here).

Wound rotor

- the rotor carries insulated three-phase windings, which are accessed through sliprings and brushes
- used when the rotor circuits have to be accessed, e.g. to control
- the starting torque (external resistance)
- the starting current
- the rotor speed
- construction and maintenance are more expensive.

Modelling the induction machine

Motor sign convention at both stator and rotor.

$$
\begin{array}{rll}
v_{a}=R_{s} i_{a}+\frac{d \psi_{a}}{d t} & v_{b}=R_{s} i_{b}+\frac{d \psi_{b}}{d t} & v_{c}=R_{s} i_{c}+\frac{d \psi_{c}}{d t} \\
0=R_{r} i_{A}+\frac{d \psi_{A}}{d t} & 0=R_{r} i_{B}+\frac{d \psi_{B}}{d t} & 0=R_{r} i_{C}+\frac{d \psi_{C}}{d t}
\end{array}
$$

R_{s} : resistance of one stator circuit $\quad R_{r}$: resistance of one rotor circuit
single pair of poles assumed for simplicity of notation

Park transformation, equations and inductance matrix

- Several reference frames can be used, depending on the application
- we use d and q reference axes which rotate at the angular speed ω_{s}
- both stator and rotor windings are transformed into this reference frame
- this yields new, equivalent windings which are all fixed wrt each other.

ω_{r} : rotor speed

	original windings	transformed into	relative speed
stator	a, b, c	$d s, q s$, os	ω_{s}
rotor	A, B, C	$d r, q r$, or	$\omega_{s}-\omega_{r}$

By similarity with the derivations of the synchronous machine :

$$
\begin{aligned}
& v_{d s}=R_{s} i_{d s}+\omega_{s} \psi_{q s}+\frac{d \psi_{d s}}{d t} \\
& v_{q s}=R_{s} i_{q s}-\omega_{s} \psi_{d s}+\frac{d \psi_{q s}}{d t} \\
& v_{o s}=R_{s} i_{o s}+\frac{d \psi_{o s}}{d t} \\
& 0=R_{r} i_{d r}+\left(\omega_{s}-\omega_{r}\right) \psi_{\text {qr }}+\frac{d \psi_{d r}}{d t} \\
& 0=R_{r} i_{q r}-\left(\omega_{s}-\omega_{r}\right) \psi_{d r}+\frac{d \psi_{q r}}{d t} \\
& 0=R_{r} i_{o r}+\frac{d \psi_{o r}}{d t} \\
& {\left[\begin{array}{l}
\psi_{d s} \\
\psi_{q s} \\
\psi_{o s} \\
\psi_{d r} \\
\psi_{q r} \\
\psi_{o r}
\end{array}\right]=\left[\begin{array}{llllll}
L_{s s} & & & L_{s r} & & \\
& L_{s s} & & & L_{s r} & \\
& & L_{o s} & & & \\
L_{s r} & & & L_{r r} & & \\
& L_{s r} & & & L_{r r} & \\
& & & & & L_{o r}
\end{array}\right]\left[\begin{array}{c}
i_{d s} \\
i_{q s} \\
i_{o s} \\
i_{d r} \\
i_{q r} \\
i_{o r}
\end{array}\right]}
\end{aligned}
$$

Typical values

R_{s} $0.01-0.12 \mathrm{pu}$ $L_{s s}-L_{s r}$ $0.07-0.15 \mathrm{pu}$ $L_{s r}$ $1.8-3.8 \mathrm{pu}$	$L_{r r}$	$0.01-L_{s r}$	$0.06-0.13 \mathrm{pu}$
per unit values on the machine base			

Energy, power and torque

Stator power balance

Instantaneous power entering the stator $=$
Joule losses in stator $p_{J s}$
$+d / d t$ magnetic energy in stator windings $W_{m s}$

+ power passing from stator to rotor $p_{s \rightarrow r}$

$$
\begin{aligned}
p_{T}(t)= & v_{a} i_{a}+v_{b} i_{b}+v_{c} i_{c}=v_{d s} i_{d s}+v_{q s} i_{q s}+v_{o s} i_{o s} \\
= & \left(R_{s} i_{d s}^{2}+R_{s} i_{q s}^{2}+R_{s} i_{o s}^{2}\right)+\left(i_{d s} \frac{d \psi_{d s}}{d t}+i_{q s} \frac{d \psi_{q s}}{d t}+i_{o s} \frac{d \psi_{o s}}{d t}\right) \\
& +\omega_{s}\left(\psi_{q s} i_{d s}-\psi_{d s} i_{q s}\right)
\end{aligned}
$$

Hence:

$$
\begin{equation*}
p_{s \rightarrow r}=\omega_{s}\left(\psi_{q s} i_{d s}-\psi_{d s} i_{q s}\right) \tag{1}
\end{equation*}
$$

Rotor power balance

Power passing from stator to rotor $p_{s \rightarrow r}=$
Joule losses in rotor $p_{J r}+d / d t$ magnetic energy in rotor windings $W_{m r}$
$+d / d t$ kinetic energy $W_{c}+$ power transferred to the mechanical load P_{m}.

From the Park equations :

$$
\begin{gathered}
v_{d r} i_{d r}+v_{q r} i_{q r}+v_{o r} i_{o r}=0 \\
\left(R_{r} i_{d r}^{2}+R_{r} i_{q r}^{2}+R_{r} i_{o r}^{2}\right)+\left(i_{d r} \frac{d \psi_{d r}}{d t}+i_{q r} \frac{d \psi_{q r}}{d t}+i_{o r} \frac{d \psi_{o r}}{d t}\right)+\left(\omega_{s}-\omega_{r}\right)\left(\psi_{q r} i_{d r}-\psi_{d r} i_{q r}\right)=0 \\
p_{J r}+\frac{d W_{m r}}{d t}=-\left(\omega_{s}-\omega_{r}\right)\left(\psi_{q r} i_{d r}-\psi_{d r} i_{q r}\right)
\end{gathered}
$$

Hence, the above rotor power balance equation can be rewritten as :

$$
p_{s \rightarrow r}=-\left(\omega_{s}-\omega_{r}\right)\left(\psi_{q r} i_{d r}-\psi_{d r} i_{q r}\right)+\frac{d W_{c}}{d t}+P_{m}
$$

Replacing $p_{s \rightarrow r}$ by (1) and using the rotor motion equation :

$$
\left(\omega_{s}-\omega_{r}\right)\left(\psi_{q r} i_{d r}-\psi_{d r} i_{q r}\right)+\omega_{s}\left(\psi_{q s} i_{d s}-\psi_{d s} i_{q s}\right)=\omega_{r} T_{e}
$$

Expressions of torque

$$
\begin{aligned}
\psi_{q s} i_{d s}-\psi_{d s} i_{q s} & =\left(L_{s s} i_{q s}+L_{s r} i_{q r}\right) i_{d s}-\left(L_{s s} i_{d s}+L_{s r} i_{d r}\right) i_{q s}=L_{s r}\left(i_{q r} i_{d s}-i_{d r} i_{q s}\right) \\
\psi_{q r} i_{d r}-\psi_{d r} i_{q r} & =\left(L_{r r} i_{q r}+L_{s r} i_{q s}\right) i_{d r}-\left(L_{r r} i_{d r}+L_{s r} i_{d s}\right) i_{q r}=L_{s r}\left(i_{q s} i_{d r}-i_{d s} i_{q r}\right) \\
& =-\left(\psi_{q s} i_{d s}-\psi_{d s} i_{q s}\right)
\end{aligned}
$$

Hence :

$$
T_{e}=\psi_{q s} i_{d s}-\psi_{d s} i_{q s}=\psi_{d r} i_{q r}-\psi_{q r} i_{d r}=L_{s r}\left(i_{q r} i_{d s}-i_{d r} i_{q s}\right)
$$

Remarks

- The above derivation shows that $p_{s \rightarrow r}=\omega_{s} T_{e}$
- $p_{s \rightarrow r}$ is both of electromagnetic and mechanical nature
- the expression of T_{e} looks very similar to that of the synchronous machine
- but both machines behave quite differently
- in particular, in the synchronous machine, $p_{s \rightarrow r}$ is of mechanical nature only.

Rotor motion equation

Following the same derivation as for the synchronous machine yields :

$$
2 H \frac{d}{d t} \omega_{r}=T_{e}-T_{m}
$$

where H is the inertia constant, in second ω_{r}, T_{e} and T_{m} are in per unit t is in second.

Mechanical torque T_{m} : varies with the rotor speed ω_{r}
A common model is :

$$
T_{m}=T_{m o}\left(A \omega_{r}^{2}+B \omega_{r}+C\right) \quad \text { with } A+B+C=1
$$

where :
$T_{m o}$ is the torque value at synchronous speed, i.e. when $\omega_{r}=1$
A, B et C depend on the driven mechanical load.

Typical inertia and torque parameters

component	A	B	C	$H(\mathrm{~s})$
heat pump, air conditioning	0.2	0.0	0.8	0.28
refrigerator, freezer	0.2	0.0	0.8	0.28
dishwasher	1.0	0.0	0.0	0.28
clothes washer	1.0	0.0	0.0	1.50
clothes dryer	1.0	0.0	0.0	1.30
pumps, fans, other motors	1.0	0.0	0.0	0.70
small industrial motor	1.0	0.0	0.0	0.70
large industrial motor	1.0	0.0	0.0	1.50
power plant auxiliaries	1.0	0.0	0.0	1.50
agricultural water pump	1.0	0.0	0.0	0.4

Model under the phasor approximation

Neglecting transformer voltages and dropping the "os" winding:

$$
\begin{align*}
& v_{d s}=R_{s} i_{d s}+\omega_{s} \psi_{q s} \tag{2}\\
& v_{q s}=R_{s} i_{q s}-\omega_{s} \psi_{d s} \tag{3}
\end{align*}
$$

The other equations are unchanged. Dropping the "or" winding:

$$
\begin{align*}
\frac{d \psi_{d r}}{d t} & =-R_{r} i_{d r}-\left(\omega_{s}-\omega_{r}\right) \psi_{q r} \tag{4}\\
\frac{d \psi_{q r}}{d t} & =-R_{r} i_{q r}+\left(\omega_{s}-\omega_{r}\right) \psi_{d r} \tag{5}\\
\psi_{d s} & =L_{s s} i_{d s}+L_{s r} i_{d r} \tag{6}\\
\psi_{q s} & =L_{s s} i_{q s}+L_{s r} i_{q r} \tag{7}\\
\psi_{d r} & =L_{s r} i_{d s}+L_{r r} i_{d r} \tag{8}\\
\psi_{q r} & =L_{s r} i_{q s}+L_{r r} i_{q r} \tag{9}\\
2 H \frac{d}{d t} \omega_{r} & =\psi_{d r} i_{q r}-\psi_{q r} i_{d r}-T_{m o}\left(A \omega_{r}^{2}+B \omega_{r}+C\right) \tag{10}
\end{align*}
$$

Third-order model of the (single-cage) induction machine.

Simplified (first-order) model

- Rotor windings contribute with fast transients
- approximation: assume their dynamics infinitely fast, and set $d \psi_{r} / d t=\mathbf{0}$
- this yields a first-order model, with rotor motion as the only dynamics.

At the rotor:

$$
\begin{aligned}
& 0=R_{r} i_{d r}+\left(\omega_{s}-\omega_{r}\right) \psi_{q r}=R_{r} i_{d r}+\left(\omega_{s}-\omega_{r}\right) L_{r r} i_{q r}+\left(\omega_{s}-\omega_{r}\right) L_{s r} i_{q s} \\
& 0=R_{r} i_{q r}-\left(\omega_{s}-\omega_{r}\right) \psi_{d r}=R_{r} i_{d r}-\left(\omega_{s}-\omega_{r}\right) L_{r r} i_{d r}-\left(\omega_{s}-\omega_{r}\right) L_{s r} i_{d s}
\end{aligned}
$$

Dividing by $\frac{\omega_{s}-\omega_{r}}{\omega_{s}}$:

$$
\begin{align*}
& 0=\frac{\omega_{s} R_{r}}{\omega_{s}-\omega_{r}} i_{d r}+\omega_{s} L_{r r} i_{q r}+\omega_{s} L_{s r} i_{q s} \tag{11}\\
& 0=\frac{\omega_{s} R_{r}}{\omega_{s}-\omega_{r}} i_{q r}-\omega_{s} L_{r r} i_{d r}-\omega_{s} L_{s r} i_{d s} \tag{12}
\end{align*}
$$

$\frac{\omega_{s}-\omega_{r}}{\omega_{s}}$ is the rotor slip with respect to ω_{s}.

At the stator:

$$
\begin{align*}
& v_{d s}=R_{s} i_{d s}+\omega_{s}\left(L_{s s} i_{q s}+L_{s r} i_{q r}\right) \tag{13}\\
& v_{q s}=R_{s} i_{q s}-\omega_{s}\left(L_{s s} i_{d s}+L_{s r} i_{d r}\right) \tag{14}
\end{align*}
$$

By analogy with the synchronous machine, one can interpret :

- $i_{d s}$ and $i_{q s}$ as projections on the (d, q) axes of a rotating vector representing the current in phase a, with corresponding phasor \bar{l};
- $i_{d r}$ and $i_{q r}$ as projections on (d, q) axes of a rotating vector representing the current in one rotor winding, seen from stator, with corresponding phasor \bar{I}_{r}.

Eqs. $(11,12)$ and $(13,14)$ can be combined into complex equations:

$$
\begin{gathered}
\bar{V}=R_{s} \bar{I}+j \omega_{s} L_{s s} \bar{I}+j \omega_{s} L_{s r} \bar{I}_{r} \\
0=\frac{\omega_{s} R_{r}}{\omega_{s}-\omega_{r}} \bar{I}_{r}+j \omega_{s} L_{r r} \bar{I}_{r}+j \omega_{s} L_{s r} \bar{I}
\end{gathered}
$$

This corresponds to the equivalent circuit :

in which :

- the "electrical part" is static
- ω_{r} varies according to the rotor motion equation (10).

Steady-state torque-slip characteristic

Motor powered under a stator voltage \bar{V}

$$
\begin{aligned}
\bar{V}_{e} & =\bar{V} \frac{j \omega_{s} L_{s r}}{R_{s}+j \omega_{s} L_{s s}} \\
R_{e}+j X_{e} & =j \omega_{s}\left(L_{r r}-L_{s r}\right)+\frac{j \omega_{s} L_{s r}\left(R_{s}+j \omega_{s}\left(L_{s s}-L_{s r}\right)\right)}{R_{s}+j \omega_{s} L_{s s}}=j \omega_{s} L_{r r}+\frac{\omega_{s} L_{s r}^{2}}{R_{s}+j \omega_{s} L_{s s}} \\
p_{s \rightarrow r} & =\frac{R_{r}}{s} I_{r}^{2}=\omega_{s} T_{e} \Rightarrow T_{e}=\frac{1}{\omega_{s}} \frac{R_{r}}{s} I_{r}^{2}=\frac{1}{\omega_{s}} \frac{R_{r}}{s} \frac{V_{e}^{2}}{\left(R_{e}+\frac{R_{r}}{s}\right)^{2}+X_{e}^{2}}
\end{aligned}
$$

Example Large industrial motor :

$$
L_{s s}=3.867, L_{s r}=3.800, L_{r r}=3.970, R_{s}=0.013, R_{r}=0.009 \mathrm{pu}
$$

Equilibrium points correspond to: $T_{e}=T_{m}$
A : stable
B : unstable
Maximum torque $T_{e}^{\max }$ proportional to V_{e}^{2}, and hence to V^{2}.

Motor response to a step decrease of voltage V

T_{m} assumed constant (for simplicity; valid for small speed variations)

- very first instants: inertia of rotating masses \Rightarrow motor slip unchanged $\Rightarrow \quad R_{r} /$ s unchanged \Rightarrow motor behaves as a constant admittance
- soon after: $T_{e}<T_{m} \Rightarrow$ the motor decelerates \Rightarrow moves to equilibrium A^{\prime}
- at the new operating point :

$$
p_{s \rightarrow r}=\omega_{s} T_{e}=\omega_{s} T_{m}
$$

Conclusion:

- the induction motor is a load which, after a voltage disturbance, restores an internally consumed active power $\left(p_{s \rightarrow r}\right)$ to its pre-disturbance value
- it does so rather fast: new equilibrium reached in less than 1 s typically
- from system operator viewpoint: decreasing the network voltage does not relieve the system in terms of load active power :-(

After a large enough voltage drop, $T_{e}^{\max }<T_{m}$: the motor stalls $\Rightarrow s$ increases $\Rightarrow I$ increases a lot \Rightarrow the motor is eventually tripped by its thermal protection

Variations of motor active and reactive powers with voltage and frequency

$$
\begin{aligned}
P & =\frac{R_{m}}{R_{m}^{2}+X_{m}^{2}} V^{2} \quad Q=\frac{X_{m}}{R_{m}^{2}+X_{m}^{2}} V^{2} \\
R_{m}+j X_{m} & =R_{s}+j \omega_{s}\left(L_{s s}-L_{s r}\right)+\frac{j \omega_{s} L_{s r}\left(\frac{R_{r}}{s}+j \omega_{s}\left(L_{r r}-L_{s r}\right)\right)}{\frac{R_{r}}{s}+j \omega_{s} L_{r r}} \\
& =R_{s}+j \omega_{s} L_{s s}+\frac{\omega_{s}^{2} L_{s r}^{2}}{\frac{R_{r}}{s}+j \omega_{s} L_{r r}}
\end{aligned}
$$

The motor slip s is given by the torque equilibrium condition:

$$
\begin{equation*}
T_{m}=T_{e} \quad \Leftrightarrow \quad T_{m}=\frac{1}{\omega_{s}} \frac{R_{r}}{s} \frac{V_{e}^{2}}{\left(R_{e}+\frac{R_{r}}{s}\right)^{2}+X_{e}^{2}} \tag{15}
\end{equation*}
$$

Procedure.

For a given set of $\left(V, \omega_{s}, T_{m}\right)$ values :
(1) compute V_{e}, R_{e} and X_{e} (see slide \# 19)
(2) solve (15) to obtain s

- solve the equation with respect to $\frac{R_{r}}{s}$, treated as intermediate variable
- from which s is easily obtained.
(0) compute R_{m} and X_{m} (see slide \# 22)
- compute P and Q (see slide \# 22).

Variation of active power P with voltage V

Exercise: show that, if R_{s} is neglected, P is constant (down to the stalling point)

Variation of active power P with angular frequency ω_{s} (or frequency f)

Exercise: show that, if R_{s} is neglected, P varies linearly with f

Variation of reactive power Q with voltage V

at high V values: power consumed in $L_{s r}$ dominates; it varies quadratically with V at low V values: power consumed in $L_{s s}-L_{r r}$ and $L_{r r}-L_{s r}$ dominates

Variation of reactive power Q with angular frequency ω_{s} (or frequency f)

The slope is positive or negative, depending upon the mechanical load!

