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Brief recall
Brief recall

Induction or asynchronous machine
@ motor widely used in industry, tertiary sector, etc.

@ sometimes also as small generator




Brief recall

Principle of operation

Stator:
@ three-phrase windings carrying three-phase currents of angular frequency ws
@ produces a magnetic field rotating at angular speed ws
@ a single pair of poles is assumed for simplicity.

Rotor:
@ rotates at a speed w, # ws characterized by the motor slip :

Ws — Wy
s=—"
Ws
@ can be modeled with a set of three-phase windings
@ currents induced in these windings have angular frequency ws — w, = sws
@ and produce a magnetic field rotating at angular speed sws with respect to
the rotor, i.e. sws + w, = ws with respect to the stator.

Both rotating magnetic fields are fixed with respect to each other.

Their interaction creates the electromagnetic torque.



Brief recall

Two types of machines: squirrel-cage and wound rotors

Squirrel-cage rotor
@ non insulated aluminum or copper bars inserted in slots, connected at their

ends to allow the currents to flow

@ simple construction, easy maintenance, reliable operation

@ possible presence of a second cage aimed at providing a larger starting torque
(non considered here).




Brief recall

Wound rotor

@ the rotor carries insulated three-phase windings, which are accessed through
sliprings and brushes
@ used when the rotor circuits have to be accessed, e.g. to control

o the starting torque (external resistance)
o the starting current

o the rotor speed

@ construction and maintenance are more expensive.
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Modelling the induction machine

Modelling the induction machine

Motor sign convention at both stator and rotor.
.o d dip . d
vV, = Rsla-i-% vb—Rlb—l—d—z/; Ve = Rsic + (;’/:_‘C
d¢A dT/)B dwC
0 = R — 0=R — 0=R —_—
ia+ ar rig + ar ric + p
R; : resistance of one stator circuit R, : resistance of one rotor circuit

single pair of poles assumed for simplicity of notation
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Brief recall Park transformation, equations and inductance matrix

Park transformation, equations and inductance matrix

@ Several reference frames can be used, depending on the application
@ we use d and g reference axes which rotate at the angular speed ws
@ both stator and rotor windings are transformed into this reference frame

@ this yields new, equivalent windings which are all fixed wrt each other.
a}gsof !\\d

w,: rotor speed

/ original | transformed | relative
\: ‘:|\ N windings into speed
Ws
Ws — Wy

\ods\\e-” Y / / stator | a, b, c ds, gs, os
(\ flf\g\/ rotor | A B,C dr,qr,or



Brief recall Park transformation, equations and inductance matrix

By similarity with the derivations of the synchronous machine :

. d
Vas = Rsigs + Wsqu + j:s
. d
Vgs = Rs lgs — WsWds + j:s
. d
Vos = Rsios + ;p:s
. d
0 = Riigr+ (ws - Wr)wqr + #
. d
0 = Rr’qr - (Ws - Wr)wdr + ;p:r
. d
0 = Rrior+ ;btor
'(/st Lss Lsr ids
qu Lss Ls iqs
Yos _ Los los
wdr Lsr er idr
wqr Ls L, iqr

Yor Lor lor



Brief recall Park transformation, equations and inductance matrix

Typical values

R, 001-012pu || R 0.01-0.13 pu
Lo — Ly | 0.07-0.15pu || L, — Ly | 0.06-0.18 pu
Ly 1.8-3.8 pu

per unit values on the machine base
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Brief recall Energy, power and torque

Energy, power and torque

Stator power balance

Instantaneous power entering the stator =

Joule losses in stator pys
+ d/dt magnetic energy in stator windings Wns

+ power passing from stator to rotor ps_,, (what type of power is it ?)
pT(t) = Vala + Vplp + Velc = Vysids + Vqsiqs + Voslos
, , . . dgs . dy . dy
= (Relfs + Reife + Reily) + (las— = + las— = +los— )

+ws('¢)qsids - wdsiqs)

Hence:
Ps—r = ws(Vgsids — Ydsigs) (1)
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Brief recall Energy, power and torque

Rotor power balance

Power passing from stator to rotor ps_,, =

Joule losses in rotor pj, 4+  d/dt magnetic energy in rotor windings W,
+ d/dt kinetic energy W, +  power transferred to the mechanical load Pp,.

From the Park equations :

Vdridr + Vqriqr + Vorior =0

. B . . d'(/}dr . d¢ r . d¢or . .
(Rr’§r+RrI§r+RrI§r)+(ldr dt +Iqr d: +lor dt )+(Ws_wr)(wqudr_wdrlqr) =0
dW,, . .
pur+ T = _(Ws - wr)(wqr/dr - 'l/)dr/qr)

Hence, the above rotor power balance equation can be rewritten as :

. . dw,
Ps—r = _(ws - wr)(wqudr - wdrlqr) + th + Pm

Replacing ps_,, by (1) and using the rotor motion equation :

(Ws - wr)(wqridr - 1l)driqr) + Ws(¢qsids - 1/}dsiqs) =w,Te



Brief recall Energy, power and torque

Expressions of torque

ql}qsids - 1pds"qs = (Lssiqs + Lsriqr)ids - (Lssids + Lsridr)iqs = Lsr(iqrids - idriqs)

’L/)qridr - 1pdriqr = (eriqr + Lsriqs)idr - (eridr + Lsrids)iqr = Lsr(iqsidr - idsiqr)

= _('l/}qsids - 1l)ds"qs)

Hence :

Te = qu"ds - ’(/)dsiqs = ¢dr"qr - wqr"dr = Lsr(iqr"ds - idriqs)~

Remarks
@ The above derivation shows that ps_,, = ws Te
® ps_,, is both of electromagnetic and mechanical nature
@ the expression of T, looks very similar to that of the synchronous machine
@ but both machines behave quite differently
@ in particular, in the synchronous machine, ps_,, is of mechanical nature only.
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Brief recall Rotor motion equation

Rotor motion equation

Following the same derivation as for the synchronous machine yields :

d
H = T.— T,
dt”

where H is the inertia constant, in second
wr, Te and T,, are in per unit
t is in second.

Mechanical torque T,, : varies with the rotor speed w,

A common model is :
7—m: mo(AwE+Bw,+C) with A+ B+C=1

where :
T o is the torque value at synchronous speed, i.e. when w, =1
A, B et C depend on the driven mechanical load.
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Brief recall Rotor motion equation

Typical inertia and torque parameters

component A | B | C | H(s)

heat pump, air conditioning || 0.2 | 0.0 | 0.8 | 0.28
refrigerator, freezer 02100 08| 0.28
dishwasher 1.0 0.0 | 00| 028

clothes washer 1.0 00|00 | 150
clothes dryer 1.0 00| 00]| 130

pumps, fans, other motors 1.0 00| 0.0 0.70
small industrial motor 1.0 00|00 | 0.70
large industrial motor 1.0 00|00 | 150
power plant auxiliaries 1.0 00|00 | 150

agricultural water pump 1.0/ 00]00]| 04
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Brief recall Model under the phasor approximation

Model under the phasor approximation

Neglecting transformer voltages and dropping the “os" winding:

Vds = Rsids'i‘wsdqu

Vgs = Rs’qs_ws¢ds

The other equations are unchanged. Dropping the “or” winding:

dwdr
dt

dier
dt
1l)ds
Ygs
wdr
Var

d
oH L,
da”

Third-order model of the (single-cage) induction machine.

—Rrigr — (ws - Wr)'(/}qr

_Rriqr + (ws - Wr)'(/}dr
Lssids + Lsridr
Lssiqs + Lsriqr
Lsrigs + Lprigr
Lorigs + Lerigr

l/}driqr - wqridr - Tmo (Aw? + Bwr + C)
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Brief recall  Simplified (first-order) model

Simplified (first-order) model

@ Rotor windings contribute with fast transients
@ approximation: assume their dynamics infinitely fast, and set di),/dt =0

@ this yields a first-order model, with rotor motion as the only dynamics.

At the rotor:

Rrigr + (Ws - wr)wqr = Rrigr + (ws - wr)eriqr + (ws - wr)Lsriqs

0 = Rriqr - (Ws - Wr)'(/)dr = Rrigr — (Ws - wr)eridr - (ws - wr)Lsrids
Dividing by 22—
s
wsRy . . .
0 = 5_ o ar + wsLprigr + wsLsrigs (11)
wsRy . . .
0 = = Igr — WsLprlgr — wsLsrids (12)
Ws — Wy

Ws — Wy | .
* " is the rotor slip with respect to ws.

Ws
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Brief recall  Simplified (first-order) model

At the stator:

Vas = Rsigs + Ws(Lssiqs + Lsriqr) (13)
Vgs = Rsiqs - Ws(Lssids + Lsridr) (14)

By analogy with the synchronous machine, one can interpret :

@ iys and igs as projections on the (d, q) axes of a rotating vector representing
the current in phase a, with corresponding phasor /;

@ iy and i as projections on (d, q) axes of a rotating vector representing the
current in one rotor winding, seen from stator, with corresponding phasor /,.

Egs. (11, 12) and (13, 14) can be combined into complex equations:
V= ":\)57 +.jws Lss7 +.jws Lsr7r

ws R,

0=

7r +jwerr7r ‘|'J"»*-’sLsr7
Ws — Wy



Brief recall  Simplified (first-order) model

This corresponds to the equivalent circuit :

Rs \"‘S(LSS - st') w‘S(Lr‘r - Ls:')

N e 200 |

W

in which :
@ the "“electrical part” is static
@ w, varies according to the rotor motion equation (10).
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Brief recall Simplified (first-order) model

Steady-state torque-slip characteristic

Motor powered under a stator voltage V

R, Li—Ly Lyp—Lo R.+jX.
. F'ﬂlx—!m\—— CEn ek
o . V.
e PN .
A A
B¢
\_/e _ jws-[—sr
RS +.jw5 LSS
. . jwsLsr(Rs +jws(Lss - Lsr)) . Wngr
Re + Xe = Ws er - Lsr + - = werr +
J J ( ) Rs + jwsLss J Rs + jwsLss
R, 1R, 1R, V2
psor= "Il =wTe = To=——"=——"_——p&—
s Wws S Wws S (Re + 7£)% + X2
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Brief recall  Simplified (first-order) model
Example Large industrial motor :

Ls = 3.867, L, = 3.800, L,, = 3.970, R, = 0.013, R, = 0.009 pu

Equilibrium points correspond to: T, = T, A : stable B : unstable

Maximum torque T/ proportional to V2, and hence to V2.



Brief recall  Simplified (first-order) model

Motor response to a step decrease of voltage V

Tm assumed constant (for simplicity; valid for small speed variations)
@ very first instants: inertia of rotating masses =- motor slip unchanged
= R,/s unchanged = motor behaves as a constant admittance
@ soon after: T, < T,, = the motor decelerates = moves to equilibrium A’
@ at the new operating point :

Ps—r = Ws Te = Ws Tm
Conclusion:

@ the induction motor is a load which, after a voltage disturbance, restores an
internally consumed active power (ps_,) to its pre-disturbance value
@ it does so rather fast: new equilibrium reached in less than 1 s typically

o from system operator viewpoint: decreasing the network voltage does not
relieve the system in terms of load active power :-(

After a large enough voltage drop, T < T,, : the motor stalls = s increases
= [ increases a lot = the motor is eventually tripped by its thermal protection
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Brief recall Simplified (first-order) model

Variations of motor active and reactive powers with

voltage and frequency

B VM/—GQM“\MJ A lI b |
el
/_*_\ o + —= R+ X
. |
B b N
R X
pP=_"" V2 =2V
RZ+ X2 TRX
. ] 'wL,&‘i’-W erfo
Rm +JXm = Rs +JwS(L$s_LSl’)+J : S(s;? JS( S))
LA+ jwsley
] w?l?
- Rt w0



Brief recall  Simplified (first-order) model

The motor slip s is given by the torque equilibrium condition:

1R, V2
Tm=T. & Tp=———_— "¢ 15
m e m WSS(R6+%)2+X62 ( )

Procedure.

For a given set of (V,ws, T,,) values :
@ compute V,, R. and X, (see slide # 19)
@ solve (15) to obtain s

. . R . . .
o solve the equation with respect to —, treated as intermediate variable
s

e from which s is easily obtained.
@ compute R, and X, (see slide # 22)
@ compute P and Q (see slide # 22).

N
o
N}



Brief recall Simplified (first-order) model

Variation of active power P with voltage V

:
——-T_=050pu
0.95- — T _=085puf]

09F ‘ g

0.85F =
0.8 T
£0.75+ b

0.7 : -

0.6 : ‘ S

0.551 : .

Exercise: show that, if Rs is neglected, P is constant (down to the stalling point)



Brief recall Simplified (first-order) model

Variation of active power P with angular frequency ws (or frequency f)

0.95 T T T T T

0.9

0.85

- --T =0.50pu

08F " g

X : — T =085pu
m

0.75 -
= :
2 o7t |
o
0.65 : -
0.6+ : |
0.55F : : ]

0.51 _

045 I 1 1 1 1
0.94 0.96 0.98 1 1.02 1.04 1.06

oou f (pu)

Exercise: show that, if Rs is neglected, P varies linearly with £



Brief recall Simplified (first-order) model

Variation of reactive power @

with voltage V

---T_=050pu

— T =085pul]

at high V values: power consumed in Ls, dominates; it varies quadratically with V
at low V values: power consumed in L, — L, and L,, — Ls, dominates



Brief recall Simplified (first-order) model

Variation of reactive power Q with angular frequency ws (or frequency f)

0.5 T T T
0.48 9

0.46

0.44

---T,=050pu
—_— Tm =0.85pu
0.4F B

0.421

Q (pu)

0.38} g
0.36 : -
0.34F : il

L it R P I  pU e

03 1 1 1 1 Il
0.94 0.96 0.98 1 1.02 1.04 1.06

The slope is positive or negative, depending upon the mechanical load !
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