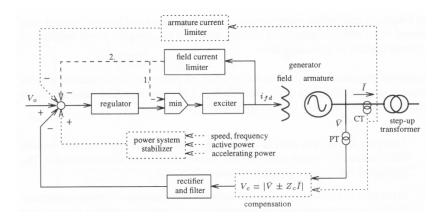


ELEC0047 - Power system dynamics, control and stability

Long-term voltage stability : generation aspects

Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct

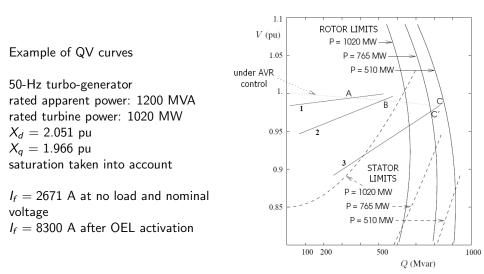
December 2019


Table of contents

Voltage instability results from the inability of the combined transmission and generation system to provide the power requested by loads

- Transmission aspects
- ► Generation aspects
- Load aspects

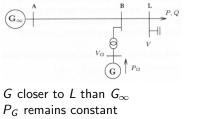
Long-term voltage stability: generation aspects


Field and armature current limiters

- field current limit imposed by OverExcitation Limiter (OEL)
- armature (or stator) current limit: seldom enforced by a limiter; most often, action by operator in power plant.

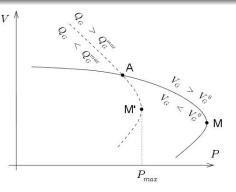
Generator QV curves

Region of admissible operating points in the (Q, V) plane, under constant P



- Under Automatic Voltage Regulator (AVR) control:
 - there is a small voltage drop when the reactive power output increases
 - this is due to the proportional control used in AVR
 - a quite common choice
 - $\bullet\,$ voltage drop is significant for low AVR open-loop static gain (e.g. 30-50 pu/pu)
 - in some other AVRs, integral control cancels the steady-state voltage error.
- Under rotor current limit :
 - assuming constant reactive power is an approximation : there is some variation with voltage
 - at least the reactive power limit must be updated with the active power P !
- Under stator current limit :

$$(VI_{max})^2 = P^2 + Q^2 \quad \Rightarrow \quad Q = \sqrt{(VI_{max})^2 - P^2}$$


- very constraining at low voltage
- $\bullet\,$ Extreme scenario: machine under limit $\to V$ drops a lot \to generator tripped by undervoltage protection
 - imposed by proper operation of power plant auxiliaries
 - acts for $V\simeq 0.85-0.9$ pu
 - $\bullet\,$ causes to lose both P and Q productions ! Larger cascading effects !

Effect of generator reactive limits on maximum load power

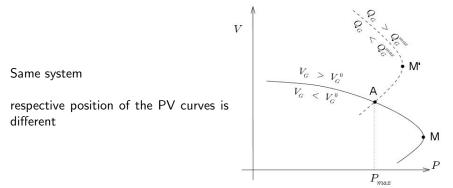
G controls V_G as long as $Q_G \leq Q_G^{max}$

simple PV/PQ model used for *G*

- When accounting for the reactive power limit, the maximum load power :
 - is reached at point M', not M !
 - is significantly reduced
 - is generally reached at a higher voltage (more dangerous)
- in most cases voltage stability would not be a problem if generators were unlimited sources of reactive power (i.e. constant voltage sources)
- need for reactive power reserves near the load centers
- \bullet impact of Q limit on max P \rightarrow electrical decoupling does no longer hold !

Illustration with a power flow calculation

 $X_{AB} = 0.2, X_{BL} = 0.005, X_{GB} = 0.02$ pu, $r_{GB} = 1.04, B_L = 200$ Mvar $P_L = 900, P_G = 400$ MW, $Q_L = 200, Q_G^{max} = 250$ Mvar, $V_G = 1.04, V_A = 1.05$ pu


Operating point beyond maximum load power

Trace of Newton iterations:

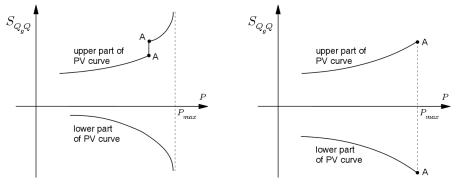
iter	max mi	smatches	:	MW	Mvaı	r -		
1			900	0.0	445.3	3		
2			199	9.3	339.1	L		
3			2	3.7	28.2	2		
4			1	2.4	1.4	1		
5			(0.8	0.4	1		
6			(0.3	0.2	2		
Gener (G : Q =	457.8 >	Qma	ax =	250.0.	Switched	to PG) type
6			(0.3	207.8	3		
7			50	0.0	22.3	3		
8			258	3.6	19.2	2		
9			14(0.2	11.3	3		
10			304	4.6	37.6	3		

divergence of Newton iterations after the generator reactive limit is enforced.

Effect of generator reactive limits - another situation

The maximum load power:

- is not reached at point M, where reactive capability of G is exceeded (would cause the OEL to act)
- is not reached at point M', where generator voltage V_G is higher than setpoint V_G^0 (would cause the AVR to regain control)
- is reached at the *breaking point* A, where $V_G = V_g^0$ and $Q_G = Q_G^{max}$


Illustration with a power flow calculation

same data except $Q_G^{max} = 350$ Mvar iter max mismatches : MW Mvar 900.0 445.3 1 2 199.3 339.1 3 23.7 28.2 4 2.4 1.4 5 0.8 0.4 6 0.3 0.2 dQg/dQ1 = 2.45 at bus L Gener G : Q = 457.8 > Qmax = 350.0. Switched to PQ type 0.3 107.8 6 7 13.1 5.0 8 5.0 0.4 9 0.2 0.1 dQg/dQ1 = -2.22 at bus L Volt of gener G = 1.1418 > setpoint = 1.0500. Back under volt ctl 9 32.2 496.0 20.6 43.3 10 11 1.7 1.5 0.5 0.4 12 0.2 0.1 13 dQg/dQ1 = 2.46 at bus L Gener G : Q = 458.4 > Qmax = 350.0. Switched to PQ type 108.4 13 0.2 14 13.1 5.0 15 5.1 0.5 16 0.2 0.1 dQg/dQ1 = -2.22 at bus L Volt of gener G = 1.1418 > setpoint = 1.0500. Back under volt ctl 16 32.2 496.0 17 20.6 43.3 1.7 1.5 ... 18

9/10

Sensitivity behaviour in the presence of generator limits

Discontinuities at the points where a generator limit is enforced

case of slide 6

the sensitivity S_{Q_gQ} goes to infinity when passing through the maximum load power point case of slide 8

the sensitivity S_{Q_gQ} does not go to infinity when passing through the maximum load power point