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Long-term voltage instability: dynamic aspects
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Dynamic simulations of a larger test system

o please refer to the separate slides “Voltage stability of the Nordic test system”

o Countermeasures against voltage instability
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Instability mechanisms of a Load Tap Changer (LTC)

A simple model
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We assume for simplicity that:
@ the transformer is ideal :
V=r V2
o the Load Tap Changer (LTC) adjusts r to have Vo, = V7
o if Vo < V7 then ris decreased
o if Vo > V5 then ris increased
e the voltage dead-band is neglected
@ the load behaves as a constant admittance with unity power factor :
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Instability mechanisms of a Load Tap Changer

Small-disturbance stability (of an operating point)
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f\load for various values
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load with voltage V5
U / restored to Vi’ by LTC
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P=G(V9)?=P°
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\ small disturbance = Ar = small increase of r

@ equilibrium point S is stable:

Ar>0 = AP<0 = AV, <0 = the LTC decreases r
Ar<0 = AP>0 = AV, >0 = thelLTC increases r
@ equilibrium point U is unstable:

Ar>0 = AP>0 = AV, >0 = the LTC further increases r
Ar<0 = AP<0 = AV, <0 = theLTC further decreases r ,,.,
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As the “demand” G increases, the stable and unstable operating points
converge, coalesce and disappear at point C
point C is a bifurcation point : a point where, for a small variation of one or
several parameter(s), the qualitative behaviour of the dynamics changes with
respect to :

o the number of equilibrium points

e or the number of limit cycles

o or the stability of equilibrium points or limits cycles, etc.
this particular bifurcation is called a saddle-node bifurcation

the saddle-node bifurcation point is also the maximum load power point
because the equilbrium characteristics of the load is a constant power, under
the effect of the LTC.
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Instability mechanisms of a Load Tap Changer

Instability due to a large disturbance
(outage of transmission lines or generators)
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load with voltage V5
<« restored to V3’ by LTC

P=G(Vg)?2=P°
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@ the LTC attempts to restore Vo — Vi and, hence, P — G (V2°)2 = p°
@ the disturbance causes the maximum load power to become smaller than P°

@ successive operating points shown with dots : in its attempt to restore V, the
LTC depresses the transmission voltage V

@ after crossing the critical point C, the tap changes produce reverse effects.
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Dynamic simulations and analysis of a 5-bus system

System

Thevenin
equiv. |

1

@O,

2 5

Load center:
@ equivalent induction motor
o static load with exponential model P = P°(V/V°)5 Q@ = Q°(V/V°)?®
@ LTC controlling voltage of static load.  Tap delays = 20 + k.10 s
fed by:
@ external system (represented by Thévenin equivalent) through long line

@ local synchronous generator equipped with AVR and OEL
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Model of overexcitation limiter
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inverse-time characteristic: the smaller the field winding overload, the longer the
delay before the field current is decreased to its limit (2.825 pu)
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Case 1. Disturbance
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At t = 1 s, tripping of one circuit of the line
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Dynamic simulation and analysis of a 5-bus system

Case
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Case 2. Disturbance
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same as Case 1 but exponential load increased to 1500 MW
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Case 2. Time responses
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Case 2. Comments

o field current of local generator limited by OEL at t ~ 70 s

@ from there on, the LTC fails restoring the distribution voltage; on the
contrary, it has reverse effect on this voltage

@ the transmission voltage drops under the effect of the LTC and the OEL

@ the short-term dynamics of the generator, its regulators, etc. respond in a
stable way
@ there is a pseudo-stabilization when the LTC reaches its limit. This
pseudo-equilibrium is not viable:
e voltage is really low (in a real system, protections could trigger further
trippings, with cascading effects)
e any attempt to increase the demand will result in opposite effect.
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A real incident with the same characteristics

Incident in Brittany (Western France), January 12, 1987
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Case 2. Instability mechanism shown by PV curves
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Dynamic simulation and analysis of a 5-bus system

Case 3. Disturbance
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Case 3. Time responses
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Case 3. Comments

@ impact of LTC and OEL similar to Case 2

@ but under the effect of the long-term degradation of operating conditions, the
(field-current limited) generator loses synchronism, which makes voltages
plunge

@ emergency actions have to be taken before reaching this “no-return” or
“collapse” point
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Case 3. Instability mechanism shown by PV curves
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Countermeasures against voltage instability

At planning stage

@ Series compensation
o very effective way of reducing series impedance of transmission lines
e expensive, more complex protection of transmission line
e possibility of subsynchronous resonance (between network elements and
generator shafts in thermal plants)
e used only in stretched systems with long transmission distances.
@ Mechanically switched shunt capacitors
o cheapest solution
e switching off shunt inductors equivalent to switching on shunt capacitors
e preventive control : maintain reactive power reserves on “fast reacting”
devices (generators, synchronous condensers, SVCs) to make them ready to
face disturbances
e corrective control : switching triggered by detection of low voltage
@ Static Var Compensators (SVCs) - Statcoms
e fast and smooth variation of shunt compensation
e more expensive than mechanically switched capacitors
o justified when speed of action is needed (short-term voltage instability)
o also used for other instabilities: e.g. transient instability in a long corridor.
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During system operation (preventively - correctively)

@ Voltage Security Assessment
e contingency analysis
@ security margins

Adjustment of generator active power productions
o keeping “out of merit” generators in service units for security reasons
e generation rescheduling
o start-up of fast units (e.g. gas turbines) if located near loads

Adjustment of generator voltages
e “boosting” of generator voltages to increase load voltages
e this also increases the maximum power deliverable to loads
e variation limited by maximum voltage allowed at generator terminal
e control of multiple interacting generators must be coordinated.

Emergency control of load tap changers : see next slide
Support from dispersed generation at distribution level : see next slide

Under-voltage load shedding : last-resort countermeasure
o very effective: shedding need not be large to restore voltages to normal values
e immediate effect; appropriate to correct large voltage drops
o unlike under-frequency load shedding, location is important
e amount and time linked: beyond some time, acting later requires to act more.
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transmission Increase ‘/;5

" By, Q
gl o decrease P{ and/or Q;
! I

Vi —1— decrease Py and Q¢ increx<e P,
equivalent ’ :
distribution
feeder

decrease V;

Vi Tpg,Qg \\

freeze  decrease @),
1

LTC |
Pr, Qe decrease v

LTC voltage makes
. (); increase !
setpoint

increase @,
I
1
v
makes
/; increase !
1

|
as well as

Pyand Q!

DGU : Dispersed Generation Unit (at distribution level) controlling P, and Qg

N
N
N
N



	Long-term voltage instability: dynamic aspects
	Instability mechanisms of a Load Tap Changer
	Dynamic simulation and analysis of a 5-bus system
	Countermeasures against voltage instability


