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Analysis of unbalanced systems: the symmetrical components

Recall: the operator a

a = e j
2π
3 = −1

2
+ j

√
3

2

with obviously:

a2 = e j
4π
3 = e−j

2π
3 = a? = −1

2
− j

√
3

2

1 + a + a2 = 0
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Analysis of unbalanced systems: the symmetrical components Symmetrical components: definition

Symmetrical components: definition

Consider an electrical circuit:

made up of three phases

operating in sinusoidal steady-state

operating in unbalanced conditions.

A set of three unbalanced phasors can be decomposed into the sum of:

three phasors making up a positive (or direct) sequence

three phasors making up an negative sequence

three phasors making up a zero sequence

In what follows, we consider voltages but all derivations equally apply to currents.
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Analysis of unbalanced systems: the symmetrical components Symmetrical components: definition

positive sequence: three rotating vectors, of same magnitude, shifted by 120o

which an observer sees passing in the order a, b, c , a, b, c . . .
→ denoted +
negative sequence: three rotating vectors, of same magnitude, shifted by
120o which an observer sees passing in the order a, c , b, a, c , b . . .
→ denoted −
zero sequence: three rotating vectors, of same magnitude and in phase
→ denoted o.
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Analysis of unbalanced systems: the symmetrical components Symmetrical components: definition

How obtain the above mentioned decomposition:

V a = V a+ + V a− + V ao = V+ + V− + V o

V b = V b+ + V b− + V bo = a2 V+ + a V− + V o

V c = V c+ + V c− + V co = a V+ + a2 V− + V o

In matrix form:  V a

V b

V c


︸ ︷︷ ︸

V T

=

 1 1 1
a2 a 1
a a2 1


︸ ︷︷ ︸

T

 V+

V−
V o


︸ ︷︷ ︸

V F

V+ : positive-sequence component V− : negative-sequence component
V o : zero-sequence component

(“of phase a” implied)

= symmetrical components or Fortescue components of V a,V b,V c

The same transformation by matrix T applies to currents.
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Analysis of unbalanced systems: the symmetrical components Symmetrical components: definition

Inverse transformation

V F = T
−1
V T V+

V−
V o

 = T
−1

 V a

V b

V c


I F = T

−1
IT I+

I−
I o

 = T
−1

 I a
I b
I c



with:

T
−1 =

1

3

 1 a a2

1 a2 a
1 1 1

 =
1

3
[T ?]T
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Analysis of unbalanced systems: the symmetrical components Symmetrical components: definition

Numerical example

 V+

V−
V o

 =
1

3

 1 a a2

1 a2 a
1 1 1

 0.95∠0o

1.20∠− 70o

0.75∠100o

 =

 0.8383∠15.28o

0.2838∠− 161.25o

0.4301∠− 17.55o
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Analysis of unbalanced systems: the symmetrical components Symmetrical components: definition

V a = V+ + V− + V o

V b = a2 V+ + a V− + V o

V c = a V+ + a2 V− + V o
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Analysis of unbalanced systems: the symmetrical components Symmetrical components: definition

Remarks

1 Obvious feature: in balanced three-phase operation,
voltages and currents only have positive-sequence components;
the negative-sequence and the zero-sequence components are zero.

2 Anglo-Saxon vs. French terminology :

symmetrical components composantes symétriques
positive-sequence denoted + or 1 directe notée d
negative-sequence denoted − or 2 inverse notée i

zero-sequence denoted o homopolaire notée o
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Analysis of unbalanced systems: the symmetrical components Powers and symmetrical components

Powers and symmetrical components

Complex power flowing through the three phases:

S = V aI
?

a + V bI
?

b + V c I
?

c = V
T

T I
?

T

=
[
TV F

]T [
TI F

]?
= V

T

F T
T
T
?
I
?

F = 3 V
T

F T
T
[
T
−1
]T
I
?

F = 3 V
T

F I
?

F

= 3 (V+I
?

+ + V−I
?

− + V o I
?

o)

The coefficient 3 comes from the fact that V+I
?

+ is only one third of the power in

the positive sequence, V−I
?

− only one third of the power in negative sequence,

and V o I
?

o only one third of the power in the zero sequence
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence impedances of a load

Positive, negative and zero-sequence impedances of a load

IT = Y V T

T I F = Y T V F

I F = T
−1

Y T︸ ︷︷ ︸
YF

V F

If Y has full three-phase symmetry:

Y =

 ys ym ym
ym ys ym
ym ym ys


then YF is the diagonal matrix: ys − ym 0 0

0 ys − ym 0
0 0 ys + 2ym



V T = Z IT

T V F = Z T I F

V F = T
−1

Z T︸ ︷︷ ︸
ZF

I F

If Z has full three-phase symmetry:

Z =

 zs zm zm
zm zs zm
zm zm zs


then ZF is the diagonal matrix: zs − zm 0 0

0 zs − zm 0
0 0 zs + 2zm
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence impedances of a load

Under the above-mentioned assumption that the load has full three-phase
symmetry, the positive, negative and zero-sequence circuits are fully decoupled.

12 / 45



Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence impedances of a load

Interpretation of positive-, negative- and zero-sequence impedances

Note. The following interpretations are general and can be extended to the other
network components.

The positive-sequence impedance zs − zm is the impedance seen in one phase
when the load is supplied by positive sequence currents.

Proof: IT =

 I a
a2I a
aI a

 ⇒ I F = T
−1
IT =

 I a
0
0


V+ = (zs−zm)I+ = (zs−zm)I a V− = (zs−zm)I− = 0 V o = (zs+2zm)I o = 0

⇒ V a = V+ + V− + V o = V+ = (zs − zm)I a ♦

The positive-sequence impedance is nothing but the cyclic impedance defined in
the per phase analysis (see course ELEC0014).
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence impedances of a load

The negative-sequence impedance zs − zm is the impedance seen in one phase
when the load is supplied by negative sequence currents.

Proof: IT =

 I a
aI a
a2I a

 ⇒ I F = T
−1
IT =

 0
I a
0


V+ = 0 V− = (zs − zm)I− = (zs − zm)I a V o = 0

⇒ V a = V+ + V− + V o = V− = (zs − zm)I a ♦

The zero-sequence impedance zs + 2zm is the impedance seen in one phase when
the load is supplied by zero sequence currents.

Proof: IT =

 I a
I a
I a

 ⇒ I F = T
−1
IT =

 0
0
I a


V+ = 0 V− = 0 V o = (zs + 2zm)I o = (zs + 2zm)I a

⇒ V a = V+ + V− + V o = V o = (zs + 2zm)I a ♦
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence impedances of a load

Exercise 1. Consider the three-phase load obtained by assembling three
impedances z in a star and connecting the neutral to the ground through an
impedance zn. Show that the positive and negative-sequence impedances are z
and the zero-sequence impedance z + 3zn.

Exercise 2. Consider the three-phase load obtained by assembling three
impedances z in a triangle. Show that the positive and negative-sequence
impedances are z/3 and the zero-sequence impedance is infinite.
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equiv. circuits of a synchronous generator

Positive, negative and zero-sequence equivalent circuits of
a synchronous generator

We assume a star configuration, with an impedance zn in the neutral.

By construction, generators present a three-phase symmetry ⇒ the positive,
negative and zero-sequence equivalent circuits are decoupled
(see case of load in slide # 12)

the neutral impedance appears in the zero-sequence circuit only, and
multiplied by 3 (see Exercise 1)

if the stator windings are connected in triangle, zn is infinite (see Exercise 2).
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equiv. circuits of a synchronous generator

Positive-sequence equivalent circuit

A synchronous generator aims at producing positive-sequence voltages;
hence, an e.m.f. (Ē+) appears in the positive-sequence equivalent circuit only

the positive-sequence equivalent circuit is the equivalent circuit already
known from the analysis of the generator in balanced three-phase operation

the impedance z+ is the stator resistance in series with a reactance that
depends on the time interval considered:

unbalanced permanent operation: consider the synchronous reactance X
immediately after a short-circuit: consider the subtransient reactance X ′′

in case of short-circuit analysis, the e.m.f. Ē+ behind the reactance X ′′ is
assumed constant and is determined from the pre-fault operating conditions
(see lecture “Behaviour of synchronous machine during a short-circuit”)
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equiv. circuits of a synchronous generator

Negative-sequence impedance

Recall from course ELEC0014: in the air gap, at an angle ϕ of the axis of phase a,
the magnitude of the magnetic field produced by the three phases is:

H3φ(ϕ) = kia cosϕ+ kib cos(ϕ−
2π

3
) + kic cos(ϕ−

4π

3
)

If the stator windings are supplied with positive-sequence three-phase currents:

H3φ(ϕ) =
√

2kI

[
cos(ωt + ψ) cosϕ+ cos(ωt + ψ −

2π

3
) cos(ϕ−

2π

3
)+

+ cos(ωt + ψ −
4π

3
) cos(ϕ−

4π

3
)

]
=

3
√

2kI

2
cos(ωt + ψ − ϕ)

≡ equation of a magnetic field rotating in the air gap with angular speed ω.

If the stator windings are supplied with negative-sequence three-phase currents:

H3φ(ϕ) =
√

2kI

[
cos(ωt + ψ) cosϕ+ cos(ωt + ψ +

2π

3
) cos(ϕ−

2π

3
)+

+ cos(ωt + ψ +
4π

3
) cos(ϕ−

4π

3
)

]
=

3
√

2kI

2
cos(ωt + ψ + ϕ)

≡ equation of a magnetic field rotating in the air gap with angular speed −ω.
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equiv. circuits of a synchronous generator

z− is the impedance seen in one phase, when a negative sequence of currents
is injected in the machine . . .

. . . after having set vf to zero (field winding short-circuited)

since this voltage creates positive-sequence stator voltages already taken into
account in the positive-sequence equivalent circuit

the negative sequence of currents produces a magnetic field rotating at speed
−ω opposed to that of the rotor

thus, the generator operates like an induction machine with a slip:

s =
−ω − ω
−ω

= 2

z− is the impedance seen in one phase of that induction machine with s = 2

z− = r− + jx−
x− is close to the subtransient reactance X ′′. Indeed, the stator magnetic
field induces currents of angular frequency 2ω in the rotor circuits. These
currents tend to maintain a constant flux in the rotor circuits. The lines of
the magnetic field are close to those that prevail just after a short-circuit
(hence x− ' X ′′).
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equiv. circuits of a synchronous generator

Zero-sequence impedance

In the air gap, at an angle ϕ of the axis of phase a, the magnitude of the
magnetic field produced by the three phases is:

H3φ(ϕ) = kia cosϕ+ kib cos(ϕ−
2π

3
) + kic cos(ϕ−

4π

3
)

If the stator windings are supplied with zero-sequence three-phase currents:

H3φ(ϕ) =
√

2kI

[
cos(ωt + ψ) cosϕ+ cos(ωt + ψ) cos(ϕ−

2π

3
)+

+ cos(ωt + ψ) cos(ϕ−
4π

3
)

]
=
√

2kI cos(ωt + ψ)

[
cosϕ+ cos(ϕ−

2π

3
) + cos(ϕ−

4π

3
)

]
= 0

i.e. there is no magnetic field in the air gap.
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equiv. circuits of a synchronous generator

zo is the impedance seen in one phase, when a zero sequence of currents is
injected in the machine . . .

. . . after having set vf to zero (field winding short-circuited)

since this voltage creates positive-sequence stator voltages already taken into
account in the positive-sequence equivalent circuit

zero-sequence stator currents produce no magnetic field in the air gap

the magnetic flux in one stator winding is produced by:

the current flowing in that winding
taking into account only the lines of magnetic field which cross that winding
but do not cross the air gap (in which they are canceled by the fields of the
other stator windings)
this is the leakage flux of the stator winding

zo = Ra + jX`
Ra is the stator resistance
X` is the stator leakage reactance; it is much smaller than the synchronous
reactance: in the range 0.1− 0.2 pu.
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equivalent circuits of a line

Positive, negative and zero-sequence equiv circuits of a line

Also applies to cables

the return current −I n = IA + IB + IC may be nonzero 1

this current flows partly in the ground and mainly in the shield wires

the latter are magnetically coupled with the (a, b, c) phase wires

the various points on the ground are no longer at the same voltage

in what follows the voltage of each phase is referred to the “local” ground
(i.e. the ground of the same switching station).

1this depends on the grounding of the other elements: see further in this chapter
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equivalent circuits of a line

Treatment of the series part of the line model

We have:

V A − V g = (V A′ − V g ′) + (V A − V A′) + (V g ′ − V g )

with:

V A − V A′ = ZaaIA + ZabIB + Zac IC + ZanI n

= (Zaa − Zan)IA + (Zab − Zan)IB + (Zac − Zan)IC

V g ′ − V g = −
(
ZanIA + ZbnIB + ZcnIC + ZnnI n

)
= (Znn − Zan)IA + (Znn − Zbn)IB + (Znn − Zcn)IC

and, hence:

V A − V g = (V A′ − V g ′)

+(Zaa + Znn − 2Zan)IA + (Zab + Znn − Zan − Zbn)IB

+(Zac + Znn − Zan − Zcn)IC

with similar expressions for phases b and c .
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equivalent circuits of a line

In matrix form: V A − V g

V B − V g

V C − V g

 = Z

 IA
IB
IC

+

 V A′ − V g ′

V B′ − V g ′

V C ′ − V g ′


with:

Z =

 Zaa + Znn − 2Zan Zab + Znn − Zan − Zbn Zac + Znn − Zan − Zcn

Zab + Znn − Zan − Zbn Zbb + Znn − 2Zbn Zbc + Znn − Zbn − Zcn

Zac + Znn − Zan − Zcn Zbc + Znn − Zbn − Zcn Zcc + Znn − 2Zcn



Passing to the symmetric components:

T

 V+

V−
V o


ABC

= Z T

 I+

I−
I o


ABC

+ T

 V+

V−
V o


A′B′C ′ V+

V−
V o


ABC

= T
−1
ZT

 I+

I−
I o


ABC

+

 V+

V−
V o


A′B′C ′
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equivalent circuits of a line

If the line presents the following symmetries2:

Zab = Zac = Zbc

Zan = Zbn = Zcn

Zaa = Zbb = Zcc

then Z has full three-phase symmetry:

Z =

 zs zm zm
zm zs zm
zm zm zs


and we have:

T
−1
ZT =

 zs − zm 0 0
0 zs − zm 0
0 0 zs + 2zm


with

zs − zm = Zaa − Zab

zs + 2zm = Zaa + 2Zab + 3Znn − 6Zan

2this is an approximation: see course ELEC0014
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equivalent circuits of a line

Treatment of the shunt part of the line model

Consider the one located to the left of the series part in slide # 22

 I a
I b
I c

 =

 IA
IB
IC

+ jB

 V a − V g

V b − V g

V c − V g


V a = V A V b = V B V c = V C

Passing to the symmetric components:

T

 I+

I−
I o


abc

= T

 I+

I−
I o


ABC

+ jBT

 V+

V−
V o


abc I+

I−
I o


abc

=

 I+

I−
I o


ABC

+ jT−1
BT

 V+

V−
V o


abc
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equivalent circuits of a line

If B has full three-phase symmetry:

B =

 bs bm bm
bm bs bm
bm bm bs


then, we have:

T
−1
BT =

 bs − bm 0 0
0 bs − bm 0
0 0 bs + 2bm
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equivalent circuits of a line

Equivalent circuits

Under the above mentioned three-phase symmetries, the positive, negative and
zero-sequence equivalent circuits are decoupled.
They have the following structure and parameters:
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equivalent circuits of a line

Interpretation of impedances and admittances of the equivalent circuits

zs − zm is the series impedance seen in one phase when positive-sequence
currents flow in the line

bs − bm is the half shunt susceptance seen in one phase when the line is
subject to positive-sequence voltages

the positive-sequence equivalent circuit is the per-phase one derived in course
ELEC0014. zs − zm is the cyclic impedance.

the negative- and positive-sequence parameters of a line are identical since
changing the sequence of currents (from positive to negative) does not
modify the behaviour of the line.
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equivalent circuits of a line

zs + 2zm is the series impedance seen in one phase when zero-sequence
currents flow in the line

the lines of magnetic field created by such currents are very different from
those created by positive-sequence currents. This leads to a zero-sequence
reactance 2 to 3.5 times larger than the positive-sequence reactance.

bs + 2bm is the half shunt susceptance seen in one phase when the line is
subject to zero-sequence voltages

the zero-sequence impedance zs + 2zm involves the parameters Zan and Znn

relative to the ground and the shield wires. These parameters are not
involved in the positive and negative-sequence impedances.

in practice, the parameters relative to the ground are not known accurately

for instance the resistivity of the ground along the line is not well known

hence, the zero-sequence impedance should be measured instead of calculated

such measurements allow better knowing the positive-sequence parameters
also.
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equivalent circuits of a transformer

Positive, negative and zero-sequence equivalent circuits of
a transformer

Positive-sequence equivalent circuit

The positive-sequence equivalent circuit of the transformer is the per-phase
equivalent derived in course ELEC0014:

∠n = p
π

6
where p ∈ {0, 1, 2, . . . , 11} : see IEC code of the vector group

Negative-sequence equivalent circuit

The negative-sequence impedances are equal to the positive-sequence
impedances since changing the phasor sequence does not change the
transformer behaviour
however, the complex transformer ratio n̄ is replaced by its conjugate n̄? as
shown in the following two slides for a transformer Yd11
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equivalent circuits of a transformer

Yd11 transfo with positive-sequence voltages and currents (see course ELEC0014)

V̄a′ =
1√
3
e jπ/6 V̄a′c′ =

n2√
3n1

e jπ/6 V̄1n = n̄V̄1n with n̄ =
n2√
3 n1

e jπ/6

Īa′ =
√

3 e jπ/6 Īa′c′ =

√
3 n1

n2

1

e−jπ/6
Ī1 =

1

n̄?
Ī1
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equivalent circuits of a transformer

Same Yd11 transformer with negative-sequence voltages and currents

V̄a′ =
1√
3
e−jπ/6 V̄a′c′ =

n2√
3n1

e−jπ/6 V̄1n = n̄?V̄1n

Īa′ =
√

3 e−jπ/6 Īa′c′ =

√
3 n1

n2

1

e jπ/6
Ī1 =

1

n̄
Ī1
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equivalent circuits of a transformer

Zero-sequence equivalent circuit

It what follows the magnetizing reactance Xm has been assumed infinite, to make
the figures more legible, but there is no problem adding it for better accuracy.

Yy0 transformer

Kirchhoff current law: 3Ī1 = 0 ⇒ Ī1 = 0
Kirchhoff current law: 3Ī2 = 0 ⇒ Ī2 = 0

Hence, the zero-sequence equivalent is:
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equivalent circuits of a transformer

Yny0 transformer

Kirchhoff current law: 3Ī2 = 0 ⇒ Ī2 = 0

Ideal transformer relation: Ī1 =
n2

n1
Ī2 ⇒ Ī1 = 0

Hence, the zero-sequence equivalent is:
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equivalent circuits of a transformer

Ynyn0 transformer

The three currents Ī1 can circulate thanks to the neutral grounding

The same holds true for Ī2, with Ī2 =
n1

n2
Ī1

Hence, the zero-sequence equivalent is:

zo : zero-sequence impedance of the transformer itself (see slide # 41)
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equivalent circuits of a transformer

Dd0 transformer

Kirchhoff current law: 3Ī1 = 0 ⇒ Ī1 = 0
Kirchhoff current law: 3Ī2 = 0 ⇒ Ī2 = 0

Hence, the zero-sequence equivalent is:

37 / 45



Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equivalent circuits of a transformer

Yd* transformateur

Kirchhoff current law: 3Ī1 = 0 ⇒ Ī1 = 0
Kirchhoff current law: 3Ī2 = 0 ⇒ Ī2 = 0

Hence, the zero-sequence equivalent is:
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equivalent circuits of a transformer

Ynd* transformer

Kirchhoff current law: 3Ī2 = 0 ⇒ Ī2 = 0

The three currents Ī1 can circulate thanks to the neutral grounding and because

the current Ī1
n1

n2
can circulate in the triangle.

Under the effect of zero-sequence currents:

V̄a′′ − V̄n = V̄b′′ − V̄n = V̄c′′ − V̄n

Hence, on the secondary of the ideal transformers:

V̄a′ − V̄c′ = V̄b′ − V̄a′ = V̄c′ − V̄b′ (1)
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equivalent circuits of a transformer

Kirchhoff voltage law gives:

(V̄a′ − V̄c′) + (V̄b′ − V̄a′) + (V̄c′ − V̄b′) = 0

Combining this with (1):

V̄a′ − V̄c′ = V̄b′ − V̄a′ = V̄c′ − V̄b′ = 0

and coming back to the primary of the ideal transformers:

V̄a′′ − V̄n = V̄b′′ − V̄n = V̄c′′ − V̄n = 0

Hence, the zero-sequence equivalent is:

zo : zero-sequence impedance of the transformer itself (see next slide)
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Analysis of unbalanced systems: the symmetrical components Positive, negative and zero-sequence equivalent circuits of a transformer

Zero-sequence impedance

1 The three phases are on separate cores

each transformer carries one of the zero-sequence currents, and “is not aware”
of the sequence of applied voltages
the zero-sequence equivalent circuit is identical to the positive-sequence one.

2 The three phases are mounted on a common iron core

the leakage reactance is (almost) the same, whatever the sequence of currents
the magnetizing susceptance is different, depending on the configuration:

three-leg configuration five-leg configuration

the magnetic fields created by the zero-sequence currents oppose to each
other more or less strongly inside the magnetic core
this leads to a small magnetic flux in each phase of the three-leg configuration
which translates into a magnetizing reactance much smaller in the
zero-sequence equivalent circuit than in the positive-sequence one.
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Analysis of unbalanced systems: the symmetrical components Assembling the sequence networks according to the fault

Assembling the sequence networks according to the fault

The equivalent circuits of the various lines, cables, transformers, generators and
loads can be assembled into one positive-sequence, one negative-sequence and one
zero-sequence network, respectively.

Consider these equivalent networks seen from a given bus.

Connect these networks to account for each of the faults shown below, taking
place at the bus of concern.
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Analysis of unbalanced systems: the symmetrical components Assembling the sequence networks according to the fault

Single-line-to-ground fault

V a = 0

Ib = 0

Ic = 0

+

−

0

V +

V −

V 0

I+
I−

I0

V + + V − + V 0 = 0

I+ = I− = I0
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Analysis of unbalanced systems: the symmetrical components Assembling the sequence networks according to the fault

Line-to-line fault

V b = V c

Ia = 0

Ib = −Ic

+ − 0V + = V −

I+ I− I0 = 0

I+ = −I−
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Analysis of unbalanced systems: the symmetrical components Assembling the sequence networks according to the fault

Double-line-to-ground fault

V b = 0

Ia = 0

V c = 0

+ V + = V − = V 0

I0

I−
I+

− 0

I+ + I− + I0 = 0
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