LIÈGE université Sciences Appliquées

ELEC0029 - Electric power systems analysis

The power flow computation

Thierry Van Cutsem
t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/ ${ }^{\sim}$ vct

February 2020

English terminology:

- load flow computation
- power flow computation (preferred)

Termes français:

- calcul de répartition de charge
- calcul d'écoulement de charge
- calcul d'écoulement de puissance.

Objective: determine the electrical state of a network (voltages at all buses, currents in all branches, losses, etc.) from consumptions and productions specified at its various buses.

Certainly the most used computation in electric power systems !

Power flow equations

"Multi-purpose" two-port

To model:

- a line or a cable: set $n_{i j}=1$ and $\phi_{i j}=0$
- a standard transformer: set $B_{s j i}=0$ and $\phi_{i j}=0$
- a phase-shifting transformer: set $B_{s j i}=0$ and $\phi_{i j} \neq 0$

$$
\bar{\iota}_{i j}=j B_{s i j} \bar{V}_{i}+Y_{i j}\left(\bar{V}_{i}-\frac{\bar{V}_{j}}{n_{i j}} e^{-j \phi_{i j}}\right)=j B_{s i j} \bar{V}_{i}+\left(G_{i j}+j B_{i j}\right)\left(\bar{V}_{i}-\frac{\bar{V}_{j}}{n_{i j}} e^{-j \phi_{i j}}\right)
$$

Power balances at the network buses

$$
\begin{gathered}
\bar{I}_{i}=j B_{s i} \bar{V}_{i}+\sum_{j \in \mathcal{N}(i)} \bar{I}_{i j} \quad i=1, \ldots, N \\
\Leftrightarrow \quad P_{i}+j Q_{i}=\bar{V}_{i} \bar{I}_{i}^{\star}=-j B_{s i} V_{i}^{2}+\sum_{j \in \mathcal{N}(i)} \bar{V}_{i} \bar{I}_{i j}^{\star} \quad i=1, \ldots, N
\end{gathered}
$$

$$
\begin{aligned}
& P_{i}+j Q_{i}=-j B_{s i} V_{i}^{2}+\sum_{j \in \mathcal{N}(i)} \bar{V}_{i} \bar{i}_{i j}^{\star} \\
&=-j B_{s i} V_{i}^{2}-j \sum_{j \in \mathcal{N}(i)} B_{s i j} V_{i}^{2}+\sum_{j \in \mathcal{N}(i)} \bar{V}_{i}\left(G_{i j}-j B_{i j}\right)\left(V_{i}^{\star}-\frac{\bar{V}_{j}^{\star}}{n_{i j}} e^{j \phi_{i j}}\right) \\
&=-j B_{s i} V_{i}^{2}-j \sum_{j \in \mathcal{N}(i)} B_{s i j} V_{i}^{2}+\sum_{j \in \mathcal{N}(i)}\left(G_{i j}-j B_{i j}\right)\left(V_{i}^{2}-\frac{V_{i} V_{j}}{n_{i j}} e^{j\left(\theta_{i}-\theta_{j}+\phi_{i j}\right)}\right) \\
& P_{i}=\underbrace{\sum_{j \in \mathcal{N}(i)} G_{i j} V_{i}^{2}-\sum_{j \in \mathcal{N}(i)} \frac{V_{i} V_{j}}{n_{i j}}\left[G_{i j} \cos \left(\theta_{i}-\theta_{j}+\phi_{i j}\right)+B_{i j} \sin \left(\theta_{i}-\theta_{j}+\phi_{i j}\right)\right]} f_{i}\left(\ldots, V_{i}, \theta_{i}, \ldots\right) \\
& Q_{i}=-\left(B_{s i}+\sum_{j \in \mathcal{N}(i)} B_{s i j}+\sum_{j \in \mathcal{N}(i)} B_{i j}\right) V_{i}^{2}+ \\
& \quad+\sum_{j \in \mathcal{N}(i)} \frac{V_{i} V_{j}}{n_{i j}}\left[B_{i j} \cos \left(\theta_{i}-\theta_{j}+\phi_{i j}\right)-G_{i j} \sin \left(\theta_{i}-\theta_{j}+\phi_{i j}\right)\right]
\end{aligned}
$$

$$
g_{i}\left(\ldots, V_{i}, \theta_{i}, \ldots\right)
$$

Data specification

LOAD BUS	GENERATOR BUS	LOAD \& GENERATOR BUS	SLACK BUS
$V_{i} \angle \theta_{i}$	$V_{i} \angle \theta_{i}$	$V_{i} \angle \theta_{i}$	$V_{N} \angle \theta_{N}$
$1 P_{i}^{c}$		${ }_{\text {c }}^{\text {c }}$	P_{N}^{g}
Q_{i}^{c}			Q_{N}^{g}

EQUATIONS

$-P_{i}^{c}=f_{i}(\ldots)$	$P_{i}^{g}=f_{i}(\ldots)$		$P_{i}^{g}-P_{i}^{c}=f_{i}(\ldots)$	
$-Q_{i}^{c}=g_{i}(\ldots)$	$Q_{i}^{g}=g_{i}(\ldots)$	$V_{i}=V_{i}^{o}$	$Q_{i}^{g}-Q_{i}^{c}=g_{i}(\ldots)$	$V_{i}=V_{i}{ }^{\circ}$
PQ BuS	PQ BuS	PV bus	PQ BuS	PV BUS
UNKNOWNS				
$V_{i} \quad \theta_{i}$	$V_{i} \quad \theta_{i}$	θ_{i}	$V_{i} \quad \theta_{i}$	θ_{i}

by substituting voltage magnitudes and phase angles in the non used power balance equation, one obtains:

The role of the slack bus

1.

One cannot specify the active powers injected P_{i} at all buses since:

$$
\sum_{i=1}^{N} P_{i}=\underbrace{\text { active losses }=p\left(\ldots, V_{i}, \theta_{i}, \ldots\right)}_{? ?}
$$

2.

- the voltage phase angles θ_{i} appear in the eqs. through differences only
- one may add an arbitrary constant c to all phase angles without changing the electric state of the network
- one bus must be taken as phase angle reference.

Slack bus: let us assume it is the N-th bus:
active power balance equation replaced by:

$$
\theta_{N}=0 \quad(0: \text { arbitrary value })
$$

Which bus take as slack bus?

At this bus, the active power injection will take the value:

$$
P_{N}=-\sum_{i=1}^{N-1} P_{i}+p
$$

where all P_{i} 's in the sum are data and p is known at the end of the computation
\Rightarrow select a bus to which a generator is connected (= slack generator)

What about reactive losses and the role of the slack bus?

- one cannot specify the reactive power injections at all buses
- luckily, they are not imposed at the PV buses !
- \Rightarrow no problem as long as there are one or more PV buses in the data (for reactive power, each PV bus acts as a slack bus).

Which data specify at the slack bus?

- either the voltage V or the reactive power injection Q
- since a generator is connected, it is natural to specify the voltage V.

Power flow equations in vector form

$N_{P V}$: nb of PV buses $\quad N_{P Q}:$ nb of PQ buses $\quad N_{P V}+N_{P Q}+1=N$
v vector of voltage magnitudes at all buses (dim. N)
$\boldsymbol{\theta}$ vector of voltage phase angles at all buses ($\operatorname{dim} . N$)
$\boldsymbol{p}^{\circ} \quad$ vector of specified active power injections at PV or PQ buses (dim. $N-1$)
\mathbf{q}° vector of specified reactive power injections at PQ buses (dim. $N_{P Q}$)
\boldsymbol{v}° vector of specified voltage magnitudes at PV and slack buses $\left(\operatorname{dim} N_{P V}+1\right)$
$N-1$ active power balance equations at PV and PQ buses:

$$
\boldsymbol{f}(\boldsymbol{v}, \boldsymbol{\theta})-\boldsymbol{p}^{\circ}=\mathbf{0}
$$

1 phase angle equation at the slack bus:

$$
\theta_{N}=0
$$

$N_{P Q}$ reactive power balance equations at PQ buses:

$$
g(v, \theta)-q^{\circ}=\mathbf{0}
$$

$N_{P V}+1$ voltage equations at the PV and slack buses:

$$
\boldsymbol{v}-\boldsymbol{v}^{\circ}=\mathbf{0}
$$

Solving the equations numerically

Newton(-Raphson) method: case of a scalar function of a single variable Let the equation be: $\quad \varphi(x)=0 . \quad$ We note $\quad \varphi_{x}=\frac{d \varphi}{d x}$.

Starting from an initial value ("guess") $x^{(0)}$, the following sequence is computed:

$$
x^{(k+1)}=x^{(k)}-\frac{\varphi\left(x^{(k)}\right)}{\varphi_{x}\left(x^{(k)}\right)} \quad k=0,1,2, \ldots
$$

until: $\quad\left|\varphi\left(x^{(k+1)}\right)\right|<\epsilon$

For $x^{(0)}$ "sufficiently close" to the solution, the convergence is fast (quadratic).

Newton method: case of a vector function of several variables

Let the equation be: $\quad \boldsymbol{\varphi}(\boldsymbol{x})=\mathbf{0}$
The Jacobian (matrix) of φ with respect to \boldsymbol{x} is defined by:

$$
\left[\varphi_{x}\right]_{i j}=\frac{\partial \varphi_{i}}{\partial x_{j}}
$$

Starting from an initial value ("guess") $\boldsymbol{x}^{(0)}$, the following sequence is computed:

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\left[\varphi_{x}\left(\boldsymbol{x}^{(k)}\right)\right]^{-1} \boldsymbol{\varphi}\left(\boldsymbol{x}^{(k)}\right) \quad k=0,1,2, \ldots
$$

until: $\quad \max _{i}\left|\varphi_{i}\left(\boldsymbol{x}^{(k+1)}\right)\right|<\epsilon$.
In pratice, the Jacobian is not inverted. Instead, the linear system:

$$
\varphi_{x}\left(x^{(k)}\right) \Delta x=-\varphi\left(x^{(k)}\right)
$$

is solved and x is incremented according to:

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\Delta \boldsymbol{x}
$$

Solving the linear system
Factorization (or LDU decomposition) of the Jacobian:

$$
\varphi_{x}=L D U
$$

L

D

U

Substitution of the right-hand side term:

$$
\varphi_{x} \Delta x=-\varphi \quad \Leftrightarrow \quad \text { LDU } \Delta x=-\varphi
$$

one solves successively:

$$
\begin{aligned}
\boldsymbol{L} \boldsymbol{y} & =-\boldsymbol{\varphi} \\
\boldsymbol{U} \Delta \boldsymbol{x} & =\boldsymbol{D}^{-1} \boldsymbol{y}
\end{aligned}
$$

which is easy owing to the triangular structure of the matrices.

Application to power flow equations

Structure of Jacobian:

$$
\boldsymbol{\varphi}_{x}=\left[\begin{array}{c|c}
\boldsymbol{f}_{v} & \boldsymbol{f}_{\theta} \\
\mathbf{0} & \boldsymbol{e}_{N} \\
\hline \boldsymbol{g}_{\boldsymbol{v}} & \boldsymbol{g}_{\theta} \\
\boldsymbol{U} & \mathbf{0}
\end{array}\right]
$$

\boldsymbol{e}_{N} : unit row vector of dimension N
\boldsymbol{U} : matrix whose entries are 0's and 1's
Each of the four sub-matrices of dimension $N \times N$.
The matrix φ_{x} is sparse: most of the elements are zero, since a power injection at one bus involves only the voltages at this bus and at its direct neighbours.

- only the nonzero terms are stored, in a compact way (accessed through pointers)
- useless operations involving zero's are avoided (sparsity programming)
- the number of nonzero terms created during the factorization (fill-in terms) is kept as low as possible, by permuting rows and columns: optimal ordering
- the pattern of nonzero terms is analyzed, often before the factorization step.

Another saving of computing time:

- the Jacobian φ_{x} is no longer updated when $\varphi(\boldsymbol{x})$ has become small enough (i.e. when \boldsymbol{x} is close enough to the solution)
- only the substitution of the right-hand side $-\boldsymbol{\varphi}\left(\boldsymbol{x}^{(k)}\right)$ is performed, reusing the available $\boldsymbol{L}, \boldsymbol{D}$ et \boldsymbol{U} matrices
- provided the iterations converge, the obtained solution does not depend on matrix φ_{x}.

Initial value $\boldsymbol{x}^{(0)}$: if a more precise estimate is not available:

- at each PV and at the slack bus: voltage magnitude set to the value specified in the data
- at other buses: voltage magnitude set to 1 pu
- at all buses: voltage phase angle set to zero (= the phase angle imposed at the slack bus).

Taking operating constraints into account

If the solution does not obey an operating constraint:

$$
h(\boldsymbol{v}, \boldsymbol{\theta}) \leq 0
$$

one can enforce:

$$
h(\boldsymbol{v}, \boldsymbol{\theta})=0
$$

provided that another equation is removed.
The resulting new set of equations is solved. The procedure is repeated if needed.

Important case : reactive power limits of generators at PV buses

$$
Q_{i}^{\min } \leq Q_{i}(\boldsymbol{v}, \boldsymbol{\theta}) \leq Q_{i}^{\max }
$$

- if $Q_{i}(\boldsymbol{v}, \boldsymbol{\theta})>Q_{i}^{\text {max }}$: the bus is switched from PV to PQ type, with $Q_{i}=Q_{i}^{\max }$ V_{i} becomes variable: $\quad V_{i}=V_{i}^{o} \quad \rightarrow \quad V_{i} \leq V_{i}^{o}$
- if $Q_{i}(\boldsymbol{v}, \boldsymbol{\theta})<Q_{i}^{\min }$: the bus is switched from PV to PQ type, with $Q_{i}=Q_{i}^{\text {min }}$ V_{i} becomes variable: $\quad V_{i}=V_{i}^{o} \quad \rightarrow \quad V_{i} \geq V_{i}^{o}$.

Newton method with enforcement of generator reactive power limits
(1) $k:=0 ; \quad \boldsymbol{v}^{(0)}=\boldsymbol{v}^{0} ; \quad \boldsymbol{\theta}^{(0)}=\boldsymbol{\theta}^{\circ}$
(2) compute $\boldsymbol{f}\left(\boldsymbol{v}^{(k)}, \boldsymbol{\theta}^{(k)}\right)-\mathbf{p}^{\circ}$ and $\boldsymbol{g}\left(\boldsymbol{v}^{(k)}, \boldsymbol{\theta}^{(k)}\right)-\mathbf{q}^{\circ}$
(3) if $\max _{i}\left|g_{i}\left(\boldsymbol{v}^{(k)}, \boldsymbol{\theta}^{(k)}\right)-Q_{i}^{\circ}\right|<\delta_{Q}$:
check generator reactive power limits ;
if some limits exceeded:
switch the corresponding buses from PV to PQ go to 2 ;
(0) if $\max _{i}\left|f_{i}\left(\boldsymbol{v}^{(k)}, \boldsymbol{\theta}^{(k)}\right)-P_{i}^{\circ}\right|<\epsilon_{P}$ and $\max _{i}\left|g_{i}\left(\boldsymbol{v}^{(k)}, \boldsymbol{\theta}^{(k)}\right)-Q_{i}^{o}\right|<\epsilon_{Q}$: stop ;
(0) if $k=0$ or $\max _{i}\left|f_{i}\left(\boldsymbol{v}^{(k)}, \boldsymbol{\theta}^{(k)}\right)-P_{i}^{\circ}\right|>\beta_{P}$ or $\max _{i}\left|g_{i}\left(\boldsymbol{v}^{(k)}, \boldsymbol{\theta}^{(k)}\right)-Q_{i}^{\circ}\right|>\beta_{Q}$: compute and factorize the Jacobian: $\varphi_{x}=\boldsymbol{L D U}$
(1) (substitution:) solve $\boldsymbol{L D} \boldsymbol{U}\left[\begin{array}{c}\Delta \boldsymbol{v} \\ \Delta \boldsymbol{\theta}\end{array}\right]=\left[\begin{array}{c}\mathbf{p}^{\circ}-\boldsymbol{f}\left(\boldsymbol{v}^{(k)}, \boldsymbol{\theta}^{(k)}\right) \\ \mathbf{q}^{\circ}-\boldsymbol{g}\left(\boldsymbol{v}^{(k)}, \boldsymbol{\theta}^{(k)}\right)\end{array}\right]$
(0) $\boldsymbol{v}^{(k+1)}=\boldsymbol{v}^{(k)}+\Delta \boldsymbol{v} ; \quad \boldsymbol{\theta}^{(k+1)}=\boldsymbol{\theta}^{(k)}+\Delta \boldsymbol{\theta}$
($k:=k+1$; go to 2 .

Iterative processing of losses

(1) Estimate the network (active power) losses. Let us denote them by \hat{p}.
(2) Share the sum of all loads and losses among the various generators, including the slack generator.
Estimated slack generator production: $\hat{P}_{N}=-\sum_{i=1}^{N-1} P_{i}+\hat{p}$.

- Run the power flow computation. This provides updated values of the losses p and the slack generator production P_{N}. Both are linked by:
and hence:

$$
\begin{gathered}
P_{N}=-\sum_{i=1}^{N-1} P_{i}+p \\
P_{N}-\hat{P}_{N}=p-\hat{p}
\end{gathered}
$$

(9) If $\left|P_{N}-\hat{P}_{N}\right|$ is too large:
adjust again the productions, using p as the new estimate of the losses go to 3 .
Else, stop.
In practice, no more than one iteration needed (i.e. 2 power flow computations).

Distributed slack buses

Share active power balancing among several generators (not just one)
\longrightarrow distributed slack buses

Let us define an additional variable ΔP_{g} used to adjust the generations:

- at the i-th bus $(i=1, \ldots, N)$ a fraction α_{i} of ΔP_{g} is assigned:

$$
P_{i}=P_{i}^{o}+\alpha_{i} \Delta P_{g} \quad \text { with } \quad \sum_{i=1}^{N} \alpha_{i}=1
$$

- if the i-th bus has no generator or has a generator not taking part in balancing:

$$
\alpha_{i}=0
$$

The vector of bus active power injections can be written as:

$$
\boldsymbol{p}=\boldsymbol{p}^{\circ}+\Delta P_{g} \boldsymbol{\alpha} \quad \text { with } \quad \boldsymbol{\alpha}=\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right]^{T}
$$

Modified power flow equations:

- at all N buses:

$$
\mathbf{f}(\boldsymbol{v}, \boldsymbol{\theta})-\mathbf{p}^{\circ}-\Delta P_{g} \boldsymbol{\alpha}=\mathbf{0}
$$

- at the phase angle reference bus:

$$
\theta_{N}=0
$$

- at buses where reactive powers are specified:

$$
\boldsymbol{g}(\boldsymbol{v}, \boldsymbol{\theta})-\boldsymbol{q}^{\circ}=\mathbf{0}
$$

- at buses where voltage magnitudes are specified:

$$
\boldsymbol{v}-\boldsymbol{v}^{\circ}=\mathbf{0}
$$

$=2 N+1$ equations with $2 N+1$ unknowns.
ΔP_{g} is computed (by Newton method) together with \boldsymbol{v} and $\boldsymbol{\theta}$.

Adjusting the transformer ratios

Why?

- To keep the voltages V at some buses at specified values V°
- to reflect an operating practice (operator adjusting transformers from a control center) or an automatic control device (load tap changer).

How?

- Ratios treated as continuous variables (approximation) or as discrete ones (corresponding to the tap positions)
- variation in constant steps or proportional to the deviation of voltage with respect to its set-point ($\left|V-V^{\circ}\right|$)
- taking in account the range of variation of each ratio ($\mathrm{min} / \mathrm{max}$ tap positions)
- after the ratios have been adjusted, a new sequence of Newton iterations is performed
- the procedure is repeated until no ratio changes any further.

Electrical decoupling

$$
\begin{aligned}
P_{i} & =\sum_{j \in \mathcal{N}(i)} G_{i j} V_{i}^{2}-\sum_{j \in \mathcal{N}(i)} \frac{V_{i} V_{j}}{n_{i j}}\left[G_{i j} \cos \left(\theta_{i}-\theta_{j}+\phi_{i j}\right)+B_{i j} \sin \left(\theta_{i}-\theta_{j}+\phi_{i j}\right)\right] \\
\frac{\partial P_{i}}{\partial V_{i}} & =2 V_{i} \sum_{j \in \mathcal{N}(i)} G_{i j}-\sum_{j \in \mathcal{N}(i)} \frac{V_{j}}{n_{i j}}\left[G_{i j} \cos \left(\theta_{i}-\theta_{j}+\phi_{i j}\right)+B_{i j} \sin \left(\theta_{i}-\theta_{j}+\phi_{i j}\right)\right] \\
\frac{\partial P_{i}}{\partial V_{j}} & =-\frac{V_{i}}{n_{i j}}\left[G_{i j} \cos \left(\theta_{i}-\theta_{j}+\phi_{i j}\right)+B_{i j} \sin \left(\theta_{i}-\theta_{j}+\phi_{i j}\right)\right] \\
\frac{\partial P_{i}}{\partial \theta_{i}} & =\sum_{j \in \mathcal{N}(i)} \frac{V_{i} V_{j}}{n_{i j}}\left[G_{i j} \sin \left(\theta_{i}-\theta_{j}+\phi_{i j}\right)-B_{i j} \cos \left(\theta_{i}-\theta_{j}+\phi_{i j}\right)\right] \\
\frac{\partial P_{i}}{\partial \theta_{j}} & =-\frac{V_{i} V_{j}}{n_{i j}}\left[G_{i j} \sin \left(\theta_{i}-\theta_{j}+\phi_{i j}\right)-B_{i j} \cos \left(\theta_{i}-\theta_{j}+\phi_{i j}\right)\right]
\end{aligned}
$$

Assuming that $\quad V_{i}=V_{j}=n_{i j} \simeq 1 \quad$ pu and $\quad \theta_{i}-\theta_{j}+\phi_{i j} \simeq 0$:

$$
\begin{aligned}
\frac{\partial P_{i}}{\partial V_{i}} & \simeq \sum_{j \in \mathcal{N}(i)} G_{i j} \quad \frac{\partial P_{i}}{\partial V_{j}}
\end{aligned} \begin{aligned}
& G_{i j} \quad \frac{\partial P_{i}}{\partial \theta_{i}}
\end{aligned} \simeq-\sum_{j \in \mathcal{N}(i)} B_{i j} \quad \frac{\partial P_{i}}{\partial \theta_{j}} \simeq B_{i j} .
$$

$$
\begin{aligned}
& Q_{i}=-\left[B_{s i}+\sum_{j \in \mathcal{N}(i)}\left(B_{s i j}+B_{i j}\right)\right] V_{i}^{2}+\sum_{j \in \mathcal{N}(i)} \frac{V_{i} V_{j}}{n_{i j}}\left[B_{i j} \cos \left(\theta_{i}-\theta_{j}+\phi_{i j}\right)-G_{i j} \sin \left(\theta_{i}-\theta_{j}\right.\right. \\
& \frac{\partial Q_{i}}{\partial V_{i}}=-2\left[B_{s i}+\sum_{j}\left(B_{s j}+B_{i j}\right)\right] V_{i}+\sum_{j} \frac{V_{j}}{n_{i j}}\left[B_{i j} \cos \left(\theta_{i}-\theta_{j}+\phi_{i j}\right)-G_{i j} \sin \left(\theta_{i}-\theta\right.\right. \\
& \frac{\partial Q_{i}}{\partial V_{j}}=\frac{V_{i}}{n_{i j}}\left[B_{i j} \cos \left(\theta_{i}-\theta_{j}+\phi_{i j}\right)-G_{i j} \sin \left(\theta_{i}-\theta_{j}+\phi_{i j}\right)\right] \\
& \frac{\partial Q_{i}}{\partial \theta_{i}}=-\sum_{j \in \mathcal{N}(i)} \frac{V_{i} V_{j}}{n_{i j}}\left[B_{i j} \sin \left(\theta_{i}-\theta_{j}+\phi_{i j}\right)+G_{i j} \cos \left(\theta_{i}-\theta_{j}+\phi_{i j}\right)\right] \\
& \frac{\partial Q_{i}}{\partial \theta_{j}}=\frac{V_{i} V_{j}}{n_{i j}}\left[B_{i j} \sin \left(\theta_{i}-\theta_{j}+\phi_{i j}\right)+G_{i j} \cos \left(\theta_{i}-\theta_{j}+\phi_{i j}\right)\right] \\
& \text { Assuming that } \quad V_{i}=V_{j}=n_{i j} \simeq 1 \quad \text { pu } \quad \text { and } \quad \theta_{i}-\theta_{j}+\phi_{i j} \simeq 0 \quad: \\
& \frac{\partial Q_{i}}{\partial V_{i}} \simeq-2\left[B_{s i}+\sum_{j} B_{s j}\right]-\sum_{j} B_{i j} \quad \frac{\partial Q_{i}}{\partial V_{j}} \simeq B_{i j} \quad \frac{\partial Q_{i}}{\partial \theta_{i}}=-\sum_{j} G_{i j} \quad \frac{\partial Q_{i}}{\partial \theta_{j}} \simeq G_{i j} \\
& \qquad G_{i j}<\left|B_{i j}\right| \Rightarrow\left|\frac{\partial Q_{i}}{\partial V_{i}}\right|,\left|\frac{\partial Q_{i}}{\partial V_{j}}\right| \gg\left|\frac{\partial Q_{i}}{\partial \theta_{i}}\right|,\left|\frac{\partial Q_{i}}{\partial \theta_{j}}\right|
\end{aligned}
$$

Jacobian matrix:
full: $\boldsymbol{\varphi}_{\boldsymbol{x}}=\left[\begin{array}{c|c}\boldsymbol{f}_{v} & \boldsymbol{f}_{\boldsymbol{\theta}} \\ \mathbf{0} & \boldsymbol{e}_{N} \\ \hline \boldsymbol{g}_{v} & \boldsymbol{g}_{\boldsymbol{\theta}} \\ \boldsymbol{U} & \mathbf{0}\end{array}\right]$
$\mathbf{f}_{\boldsymbol{\theta}}$ dominant compared to $\boldsymbol{f}_{\boldsymbol{v}}$
approximate: $\boldsymbol{\varphi}_{\mathbf{x}} \simeq\left[\begin{array}{c|c}\mathbf{0} & \boldsymbol{f}_{\boldsymbol{\theta}} \\ \mathbf{0} & \boldsymbol{e}_{N} \\ \hline \boldsymbol{g}_{\boldsymbol{v}} & \mathbf{0} \\ \boldsymbol{U} & \mathbf{0}\end{array}\right]$
$\boldsymbol{g}_{\boldsymbol{v}}$ dominant compared to $\boldsymbol{g}_{\boldsymbol{\theta}}$.

Fast decoupled Newton method:

- system of $2 N$ equations decomposed into two systems of N equations
- each Newton iteration decomposed into : one half-iteration to update the phase angles, followed by one half-iteration to update the voltage magnitudes
- active power and phase reference $\left(\theta_{N}=0\right)$ equations solved using the sub-matrix $\left[\begin{array}{c}\mathbf{f}_{\theta} \\ \boldsymbol{e}_{N}\end{array}\right]$ to update the voltage phase angles
- reactive power and voltage equations solved using the sub-matrix $\left[\begin{array}{c}\mathbf{g}_{v} \\ \boldsymbol{U}\end{array}\right]$ to update the voltage magnitudes.

The "DC" power flow approximation

Simplified power flow equations obtained after:

- linearizing the variation of active power with voltage phase angles
- neglecting the active power losses in all branches
- assuming all voltage magnitudes equal to 1 pu
- neglecting all reactive power flows in branches.

Linear model used:

- to simplify some computations, e.g.
- to perform a very large number of power flow computations: a single linear system of half size is solved
- when the power flow equations are included as constraints in a large optimization problem (Optimal power flow)
- to easily cumulate the effects of several modifications applied to the system (thanks to linearity).

Approximate linear model

Thus, we assume:

- $V_{i}=V_{j} \simeq 1 \mathrm{pu}$
- $G_{i j} \simeq 0 \quad B_{i j}=-\frac{1}{X_{i j}} \quad$ (EHV transmission networks)
- $n_{i j} \simeq 1$ (transformer ratios influence reactive power flows mainly)

Relation between active power injections and voltage phase angles:

$$
\begin{equation*}
P_{i} \simeq \sum_{j \in \mathcal{N}(i)} \frac{1}{X_{i j}} \sin \left(\theta_{i}-\theta_{j}+\phi_{i j}\right) \simeq \sum_{j \in \mathcal{N}(i)} \frac{\theta_{i}-\theta_{j}+\phi_{i j}}{X_{i j}} \tag{1}
\end{equation*}
$$

with the N-th bus as reference: $\quad \theta_{N}=0$.
Active power balance with network losses neglected:

$$
\sum_{i=1}^{N} P_{i}=0 \quad \Leftrightarrow \quad P_{N}=-\sum_{i=1}^{N-1} P_{i}
$$

With unit voltages and zero reactive power flow, we have in per unit :

$$
\iota_{i j}=\left|P_{i j}\right|=\left|\frac{\theta_{i}-\theta_{j}+\phi_{i j}}{X_{i j}}\right|
$$

Matrix form

Let us assume for simplicity that there is no phase shifting transformer:

$$
\phi_{i j}=0
$$

By grouping the equations (1) relative to buses 1 to $N-1$:

$$
\boldsymbol{p}^{\circ}=\boldsymbol{A} \boldsymbol{\theta}
$$

where \boldsymbol{A} is defined by:

$$
\begin{aligned}
& {[\boldsymbol{A}]_{i j}=-\frac{1}{X_{i j}} \quad i, j=1, \ldots, N-1 ; \quad i \neq j} \\
& {[\boldsymbol{A}]_{i j}=\sum_{j \in \mathcal{N}(i)} \frac{1}{X_{i j}} \quad i=1, \ldots, N-1}
\end{aligned}
$$

Example

Phase angle reference at bus 4: $\quad \theta_{4}=0$

$$
\left[\begin{array}{c}
P_{1} \\
-P_{2} \\
-P_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{X_{12}}+\frac{1}{X_{13}}+\frac{1}{X_{14}} & -\frac{1}{X_{12}} & -\frac{1}{X_{13}} \\
-\frac{1}{X_{12}} & \frac{1}{X_{12}}+\frac{1}{X_{24}} & 0 \\
-\frac{1}{X_{13}} & 0 & \frac{1}{X_{13}}+\frac{1}{X_{34}}
\end{array}\right]\left[\begin{array}{l}
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{array}\right]
$$

Active power balance: $\quad P_{1}-P_{2}-P_{3}+P_{4}=0$

Why is this called "Direct Current (DC)" ?

resistive circuit with direct current sources

Voltage reference: bus 4 (not the earth in this case !)
Circuit equations obtained from the nodal admittance matrix:

$$
\left[\begin{array}{c}
P_{1} \\
-P_{2} \\
-P_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{X_{12}}+\frac{1}{X_{13}}+\frac{1}{X_{14}} & -\frac{1}{X_{12}} & -\frac{1}{X_{13}} \\
-\frac{1}{X_{12}} & \frac{1}{X_{12}}+\frac{1}{X_{24}} & 0 \\
-\frac{1}{X_{13}} & 0 & \frac{1}{X_{13}}+\frac{1}{X_{34}}
\end{array}\right]\left[\begin{array}{c}
V_{c 1}-V_{c 4} \\
V_{c 2}-V_{c 4} \\
V_{c 3}-V_{c 4}
\end{array}\right]
$$

By taking $V_{c 4}=0$, we have: $\quad V_{c 1}=\theta_{1} \quad V_{c 2}=\theta_{2} \quad V_{c 3}=\theta_{3}$

Sensitivity analysis

Power flow equations in compact vector form:

$$
\begin{equation*}
\varphi(x, p)=0 \tag{2}
\end{equation*}
$$

\boldsymbol{x} : vector of voltage magnitudes and phase angles (dim. n) (state vector) \boldsymbol{p} : vector of parameters (dim. m)

Let \boldsymbol{x}^{\star} be the solution of (2) corresponding to $\boldsymbol{p}=\boldsymbol{p}^{\star}$ $\eta(\boldsymbol{x}, \boldsymbol{p})$ be a variable of interest.

How does η vary when the parameters \boldsymbol{p} are varied from \boldsymbol{p}^{\star} to $\boldsymbol{p}^{\star}+\Delta \boldsymbol{p}$?
"Brute-force" solution
Solve (2) for $\boldsymbol{p}=\boldsymbol{p}^{\star}+\Delta \boldsymbol{p}$, i.e. compute $\Delta \boldsymbol{x}$ such that:

$$
\varphi\left(\boldsymbol{x}^{\star}+\Delta \boldsymbol{x}, \boldsymbol{p}^{\star}+\Delta \boldsymbol{p}\right)=\mathbf{0}
$$

and compute the corresponding new value: $\quad \eta\left(\boldsymbol{x}^{\star}+\Delta \boldsymbol{x}, \boldsymbol{p}^{\star}+\Delta \boldsymbol{p}\right)$.

Elegant solution

Compute directly the sensitivities: $\quad S_{\eta \boldsymbol{p}}=\left[\begin{array}{c}\lim _{\Delta p_{1} \rightarrow 0} \frac{\Delta \eta}{\Delta p_{1}} \\ \vdots \\ \lim _{\Delta p_{m} \rightarrow 0} \frac{\Delta \eta}{\Delta p_{m}}\end{array}\right]$
For infinitesimal variations denoted by d. :

$$
\varphi\left(\boldsymbol{x}^{\star}+d \boldsymbol{x}, \boldsymbol{p}^{\star}+d \boldsymbol{p}\right) \simeq \varphi\left(x^{\star}, \boldsymbol{p}^{\star}\right)+\varphi_{x} d \boldsymbol{x}+\varphi_{\boldsymbol{p}} d \boldsymbol{p}=\varphi_{x} d \boldsymbol{x}+\varphi_{\boldsymbol{p}} d \boldsymbol{p}=\mathbf{0}
$$

and hence, assuming that φ_{x} is non-singular:

$$
\begin{equation*}
d \boldsymbol{x}=-\varphi_{x}^{-1} \varphi_{\boldsymbol{p}} d \boldsymbol{p} \tag{3}
\end{equation*}
$$

By linearizing η :

$$
\begin{array}{r}
d \eta=\sum_{i} \frac{\partial \eta}{\partial p_{i}} d p_{i}+\sum_{i} \frac{\partial \eta}{\partial x_{i}} d x_{i}=d \mathbf{p}^{T} \nabla_{\boldsymbol{p}} \eta+d \boldsymbol{x}^{T} \nabla_{\mathbf{x}} \eta \\
\text { where } \quad \nabla_{\boldsymbol{p}} \eta=\left[\begin{array}{c}
\frac{\partial \eta}{\partial p_{1}} \\
\vdots \\
\frac{\partial \eta}{\partial p_{m}}
\end{array}\right] \quad \nabla_{\boldsymbol{x}} \eta=\left[\begin{array}{c}
\frac{\partial \eta}{\partial x_{1}} \\
\vdots \\
\frac{\partial \eta}{\partial x_{n}}
\end{array}\right]
\end{array}
$$

Replacing $d \boldsymbol{x}$ by its expression (3):

$$
d \eta=d \boldsymbol{p}^{T} \nabla_{\boldsymbol{p}} \eta-d \boldsymbol{p}^{T} \boldsymbol{\varphi}_{\boldsymbol{p}}^{T}\left(\boldsymbol{\varphi}_{x}^{T}\right)^{-1} \nabla_{x} \eta=d \mathbf{p}^{T}\left[\nabla_{\boldsymbol{p}} \eta-\varphi_{\boldsymbol{p}}^{T}\left(\boldsymbol{\varphi}_{x}^{T}\right)^{-1} \nabla_{\times} \eta\right]
$$

which gives the sought sensitivities: $\quad S_{\eta \boldsymbol{p}}=\nabla_{\boldsymbol{p}} \eta-\varphi_{\boldsymbol{p}}^{T}\left(\varphi_{x}^{T}\right)^{-1} \nabla_{x} \eta$

Practical procedure

(1) compute $\nabla_{\mathbf{x}} \eta, \nabla_{\mathbf{p}} \eta$ and $\varphi_{\mathbf{p}}$
(2) φ_{x} being available in factorized form (LDU), solve: $\varphi_{\mathrm{x}}^{T} \mathbf{y}=\nabla_{\mathrm{x}} \eta$
(3) compute $\quad S_{\eta \mathbf{p}}=\nabla_{\mathbf{p}} \eta-\varphi_{\mathbf{p}}^{\top} \mathbf{y}$.

Examples

Sensitivities to the bus active and reactive powers:

$$
\boldsymbol{p}=\left[\begin{array}{c}
\boldsymbol{p}^{\circ} \\
\boldsymbol{q}^{\circ}
\end{array}\right] \quad \text { and } \quad \varphi_{\mathbf{p}}=-\left[\begin{array}{c}
\boldsymbol{U}_{p} \\
\mathbf{0} \\
\boldsymbol{U}_{q} \\
\mathbf{0}
\end{array}\right]
$$

$\boldsymbol{U}_{p}, \boldsymbol{U}_{q}:$ matrices including 0's and 1's.

Sensitivity of the voltage at the i-th bus

$$
\eta=V_{i} \quad \nabla_{\boldsymbol{p}} \eta=\mathbf{0} \quad \nabla_{x} \eta=\boldsymbol{e}_{V_{i}}
$$

$\boldsymbol{e}_{V_{i}}$: unit vector in which the component equal to 1 corresponds to V_{i}.

Sensitivity of reactive power produced by the generator at the i-th bus (a PV bus)

$$
\eta=Q_{g i}(\boldsymbol{x}) \quad \nabla_{\boldsymbol{p}} \eta=\mathbf{0}
$$

$\nabla_{x} \eta=\nabla_{x} Q_{g i}$: the nonzero partial derivatives correspond to the voltage magnitudes and the phase angles at bus i and at the direct neighbours of bus i.

Sensitivity of active power losses

$$
\eta=p=P_{N}+\sum_{i=1}^{N-1} P_{i}=P_{N}(\mathbf{x})+\sum_{i=1}^{N-1} P_{i} \quad \nabla_{\mathbf{p}} \eta=\left[\begin{array}{l}
\mathbf{1} \\
\mathbf{0}
\end{array}\right]
$$

1 : vector of dimension $N-1$ with all components equal to 1
0 : zero vector of dimension $N-1$.
$\nabla_{x} \eta=\nabla_{x} P_{N}$: the nonzero partial derivatives correspond to the voltage magnitudes and the phase angles at bus N and at the direct neighbours of bus N.

