LIÈGE université Sciences Appliquées

ELEC0029 - Electric Power System Analysis

The synchronous machine (detailed model)

Thierry Van Cutsem
t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct

February 2020

Objectives

Extend the model of the synchronous machine considered in course ELEC0014:

- more detailed
- appropriate for dynamic studies
- includes the effect of damper windings
- applicable to machines with salient-pole rotors (hydro power plants)

Relies on the Park transformation, also used for other power system components.

The two types of synchronous machines

Round-rotor generators (or turbo-alternators)

- Driven by steam or gas turbines, which rotate at high speed
- one pair of poles (conventional thermal units) or two (nuclear units)
- cylindrical rotor made up of solid steel forging
- diameter \ll length (centrifugal force !)
- field winding made up of conductors distributed on the rotor, in milled slots
- even if the generator efficiency is around 99%, the heat produced by Joule losses has to be evacuated!
Large generators are cooled by hydrogen (heat evacuation 7 times better than air) or water (12 times better) flowing in the hollow stator conductors.

Salient-pole generators

- Driven by hydraulic turbines (or diesel engines), which rotate at low speed
- many pairs of poles (at least 4) \Rightarrow it is more convenient to have field windings concentrated and placed on the poles
- air gap is not constant: min. in front of a pole, max. in between two poles
- poles are shaped to also minimize space harmonics
- diameter >> length (to have space for the many poles)
- rotor is laminated (poles easier to construct)
- generators usually cooled by the flow of air around the rotor.

Damper windings and eddy currents in rotor

Damper windings (or amortisseur)

- round-rotor machines: copper/brass bars placed in the same slots at the field winding, and interconnected to form a damper cage (similar to the squirrel cage of an induction motor)
- salient-pole machines: copper/brass rods embedded in the poles and connected at their ends to rings or segments.

Why?

- in perfect steady state: the magnetic fields produced by both the stator and the rotor are fixed relative to the rotor \Rightarrow no current induced in dampers
- after a disturbance: the rotor moves with respect to stator magnetic field \Rightarrow currents are induced in the dampers...
... which, according to Lenz's law, create a damping torque helping the rotor to align on the stator magnetic field.

Eddy currents in the rotor

Round-rotor generators: the solid rotor offers a path for eddy currents, which produce an effect similar to those of amortisseurs.

Modelling of machine with magnetically coupled circuits

Number of rotor windings $=$ degree of sophistication of model. But:

- more detailed model \Rightarrow more data are needed
- while measurement devices can be connected only to the field winding.

Most widely used model: 3 or 4 rotor windings:

- f : field winding $\quad d_{1}, q_{1}$: amortisseurs
- q_{2} : accounts for eddy currents in rotor; not used in (laminated) salient-pole generators.

Remarks

In the sequel, we consider:

- a machine with a single pair of poles, for simplicity.

This does not affect the electrical behaviour of the generator (it affects the moment of inertia and the kinetic energy of rotating masses)

- the general case of a salient-pole machine.

For a round-rotor machine: set some parameters to the same value in the d and q axes (to account for the equal air gap width)

- the configuration with four rotor windings $\left(f, d_{1}, q_{1}, q_{2}\right)$. For a salient-pole generator : remove the q_{2} winding.

Relations between voltages, currents and magnetic fluxes

STATOR

Stator windings: generator convention:
$v_{a}(t)=-R_{a} i_{a}(t)-\frac{d \psi_{a}}{d t} \quad v_{b}(t)=-R_{a} i_{b}(t)-\frac{d \psi_{b}}{d t} \quad v_{c}(t)=-R_{a} i_{c}(t)-\frac{d \psi_{c}}{d t}$
In matrix form:

$$
\boldsymbol{v}_{T}=-\boldsymbol{R}_{T} \mathbf{i}_{T}-\frac{d}{d t} \boldsymbol{\psi}_{T} \quad \text { with } \quad \boldsymbol{R}_{T}=\operatorname{diag}\left(R_{a} R_{a} R_{a}\right)
$$

Rotor windings: motor convention:

$$
\begin{aligned}
v_{f}(t) & =R_{f} i_{f}(t)+\frac{d \psi_{f}}{d t} \\
0 & =R_{d 1} i_{d 1}(t)+\frac{d \psi_{d 1}}{d t} \\
0 & =R_{q 1} i_{q 1}(t)+\frac{d \psi_{q 1}}{d t} \\
0 & =R_{q 2} i_{q 2}(t)+\frac{d \psi_{q 2}}{d t}
\end{aligned}
$$

In matrix form:

$$
\boldsymbol{v}_{r}=\boldsymbol{R}_{r} \mathbf{i}_{r}+\frac{d}{d t} \boldsymbol{\psi}_{r} \quad \text { with } \quad \boldsymbol{R}_{r}=\operatorname{diag}\left(R_{f} R_{d_{1}} R_{q_{1}} R_{q_{2}}\right)
$$

Inductances

Saturation being neglected, the fluxes vary linearly with the currents according to:

$$
\left[\begin{array}{c}
\boldsymbol{\psi}_{T} \\
\boldsymbol{\psi}_{r}
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{L}_{T T}\left(\theta_{r}\right) & \boldsymbol{L}_{T_{r}}\left(\theta_{r}\right) \\
\boldsymbol{L}_{T r}^{T}\left(\theta_{r}\right) & \boldsymbol{L}_{r r}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{i}_{T} \\
\boldsymbol{i}_{r}
\end{array}\right]
$$

- $\boldsymbol{L}_{T T}$ and $\boldsymbol{L}_{T r}$ vary with the position θ_{r} of the rotor
- but $\boldsymbol{L}_{r r}$ does not
- the components of $\boldsymbol{L}_{T T}$ and $\boldsymbol{L}_{T r}$ are periodic functions of θ_{r} obviously
- the space harmonics in θ_{r} are assumed negligible $=$ sinusoidal machine assumption.

$\boldsymbol{L}_{T T}\left(\theta_{r}\right)=$

$$
\left[\begin{array}{ccc}
L_{0}+L_{1} \cos 2 \theta_{r} & -L_{m}-L_{1} \cos 2\left(\theta_{r}+\frac{\pi}{6}\right) & -L_{m}-L_{1} \cos 2\left(\theta_{r}-\frac{\pi}{6}\right) \\
-L_{m}-L_{1} \cos 2\left(\theta_{r}+\frac{\pi}{6}\right) & L_{0}+L_{1} \cos 2\left(\theta_{r}-\frac{2 \pi}{3}\right) & -L_{m}-L_{1} \cos 2\left(\theta_{r}+\frac{\pi}{2}\right) \\
-L_{m}-L_{1} \cos 2\left(\theta_{r}-\frac{\pi}{6}\right) & -L_{m}-L_{1} \cos 2\left(\theta_{r}+\frac{\pi}{2}\right) & L_{0}+L_{1} \cos 2\left(\theta_{r}+\frac{2 \pi}{3}\right)
\end{array}\right]
$$

$$
L_{o}, L_{1}, L_{m}>0
$$

$\mathbf{L}_{T_{r}}\left(\theta_{r}\right)=$

$$
\left[\begin{array}{cccc}
L_{a f} \cos \theta_{r} & L_{a d 1} \cos \theta_{r} & L_{a q 1} \sin \theta_{r} & L_{a q 2} \sin \theta_{r} \\
L_{a f} \cos \left(\theta_{r}-\frac{2 \pi}{3}\right) & L_{a d 1} \cos \left(\theta_{r}-\frac{2 \pi}{3}\right) & L_{a q 1} \sin \left(\theta_{r}-\frac{2 \pi}{3}\right) & L_{a q 2} \sin \left(\theta_{r}-\frac{2 \pi}{3}\right) \\
L_{a f} \cos \left(\theta_{r}+\frac{2 \pi}{3}\right) & L_{a d 1} \cos \left(\theta_{r}+\frac{2 \pi}{3}\right) & L_{a q 1} \sin \left(\theta_{r}+\frac{2 \pi}{3}\right) & L_{a q 2} \sin \left(\theta_{r}+\frac{2 \pi}{3}\right)
\end{array}\right]
$$

$$
L_{a f}, L_{a d 1}, L_{a q 1}, L_{a q 2}>0
$$

Park transformation and equations

Park transformation

is applied to stator variables (denoted .т) to obtain the corresponding Park variables (denoted .p):

$$
\begin{aligned}
\boldsymbol{v}_{P} & =\mathcal{P} \boldsymbol{v}_{T} \\
\boldsymbol{\psi}_{P} & =\mathcal{P} \boldsymbol{\psi}_{T} \\
\boldsymbol{i}_{P} & =\mathcal{P} \boldsymbol{i}_{T} \\
\text { where } \mathcal{P} & =\sqrt{\frac{2}{3}}\left[\begin{array}{ccc}
\cos \theta_{r} & \cos \left(\theta_{r}-\frac{2 \pi}{3}\right) & \cos \left(\theta_{r}+\frac{2 \pi}{3}\right) \\
\sin \theta_{r} & \sin \left(\theta_{r}-\frac{2 \pi}{3}\right) & \sin \left(\theta_{r}+\frac{2 \pi}{3}\right) \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \\
& \\
\boldsymbol{v}_{P} & =\left[\begin{array}{lll}
v_{d} & v_{q} & v_{o}
\end{array}\right]^{T} \\
\boldsymbol{\psi}_{P} & =\left[\begin{array}{lll}
\psi_{d} & \psi_{q} & \psi_{o}
\end{array}\right]^{T} \\
\boldsymbol{i}_{P} & =\left[\begin{array}{lll}
i_{d} & i_{q} & i_{o}
\end{array}\right]^{T}
\end{aligned}
$$

It is easily shown that: $\quad \mathcal{P} \mathcal{P}^{T}=\boldsymbol{I} \quad \Leftrightarrow \quad \mathcal{P}^{-1}=\mathcal{P}^{T}$

Interpretation

Total magnetic field created by the currents i_{a}, i_{b} et i_{c} :
projected on d axis: $\quad k\left(\cos \theta_{r} i_{a}+\cos \left(\theta_{r}-\frac{2 \pi}{3}\right) i_{b}+\cos \left(\theta_{r}-\frac{4 \pi}{3}\right) i_{c}\right)=k \sqrt{\frac{3}{2}} i_{d}$ projected on q axis: $k\left(\sin \theta_{r} i_{a}+\sin \left(\theta_{r}-\frac{2 \pi}{3}\right) i_{b}+\sin \left(\theta_{r}-\frac{4 \pi}{3}\right) i_{c}\right)=k \sqrt{\frac{3}{2}} i_{q}$

The Park transformation consists of replacing the (a, b, c) stator windings by three equivalent windings (d, q, o):

- the d winding is attached to the d axis
- the q winding is attached to the q axis
- the currents i_{d} and i_{q} produce together the same magnetic field, to the multiplicative constant $\sqrt{\frac{3}{2}}$.

Park equations of the synchronous machine

$$
\begin{aligned}
& \boldsymbol{v}_{T}=-\boldsymbol{R}_{T} \boldsymbol{i}_{T}-\frac{d}{d t} \boldsymbol{\psi}_{T} \\
& \mathcal{P}^{-1} \boldsymbol{v}_{P}=-R_{\mathrm{a}} \boldsymbol{I} \mathcal{P}^{-1} \boldsymbol{i}_{P}-\frac{d}{d t}\left(\mathcal{P}^{-1} \psi_{P}\right) \\
& \boldsymbol{v}_{P}=-R_{a} \mathcal{P P}^{-1} \boldsymbol{i}_{P}-\mathcal{P}\left(\frac{d}{d t} \mathcal{P}^{-1}\right) \psi_{P}-\mathcal{P} \mathcal{P}^{-1} \frac{d}{d t} \boldsymbol{\psi}_{P} \\
&=-\boldsymbol{R}_{P} \boldsymbol{i}_{P}-\dot{\theta}_{r} \boldsymbol{P} \boldsymbol{\psi}_{P}-\frac{d}{d t} \boldsymbol{\psi}_{P} \\
& \text { with: } \quad \boldsymbol{R}_{P}=\boldsymbol{R}_{T} \quad \boldsymbol{P}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \text { By decomposing: } \quad v_{d}=-R_{a} i_{d}-\dot{\theta}_{r} \psi_{q}-\frac{d \psi_{d}}{d t} \\
& v_{q}=-R_{a} i_{q}+\dot{\theta}_{r} \psi_{d}-\frac{d \psi_{q}}{d t} \\
& v_{0}=-R_{a} i_{o}-\frac{d \psi_{0}}{d t}
\end{aligned}
$$

$\dot{\theta}_{r} \psi_{\boldsymbol{d}}, \dot{\theta}_{r} \psi_{\boldsymbol{q}}$: speed voltages $\quad d \psi_{d} / d t, d \psi_{q} / d t$: transformer voltages

Park inductance matrix

$$
\begin{aligned}
{\left[\begin{array}{c}
\boldsymbol{\psi}_{T} \\
\boldsymbol{\psi}_{r}
\end{array}\right]=} & {\left[\begin{array}{cc}
\boldsymbol{L}_{T T} & \boldsymbol{L}_{T r} \\
\boldsymbol{L}_{T r}^{T} & \boldsymbol{L}_{r r}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{i}_{T} \\
\boldsymbol{i}_{r}
\end{array}\right] } \\
{\left[\begin{array}{c}
\mathcal{P}^{-1} \boldsymbol{\psi}_{P} \\
\boldsymbol{\psi}_{r}
\end{array}\right]=} & {\left[\begin{array}{ll}
\boldsymbol{L}_{T T} & \boldsymbol{L}_{T r} \\
\boldsymbol{L}_{T r}^{T} & \boldsymbol{L}_{r r}
\end{array}\right]\left[\begin{array}{c}
\mathcal{P}^{-1} \boldsymbol{i}_{P} \\
\boldsymbol{i}_{r}
\end{array}\right] } \\
{\left[\begin{array}{c}
\boldsymbol{\psi}_{P} \\
\boldsymbol{\psi}_{r}
\end{array}\right]=} & {\left[\begin{array}{ccccc}
\mathcal{P} \boldsymbol{L}_{T T} \mathcal{P}^{-1} & \mathcal{P}_{\boldsymbol{L}_{T r}} \\
\boldsymbol{L}_{T r}^{T} \mathcal{P}^{-1} & \boldsymbol{L}_{r r}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{i}_{P} \\
\boldsymbol{i}_{r}
\end{array}\right]=\left[\begin{array}{lll}
\boldsymbol{L}_{P P} & \boldsymbol{L}_{P r} \\
\boldsymbol{L}_{r P} & \boldsymbol{L}_{r r}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{i}_{P} \\
\boldsymbol{i}_{r}
\end{array}\right] } \\
{\left[\begin{array}{cc}
\boldsymbol{L}_{P P} & \boldsymbol{L}_{P r} \\
\boldsymbol{L}_{r P} & \boldsymbol{L}_{r r}
\end{array}\right]=} & {\left[\begin{array}{llllll}
L_{d d} & & & L_{d f} & L_{d d 1} & L_{q q 1} \\
& L_{q q} & & & L_{q q 2} \\
L_{d f} & & L_{o o} & & L_{f f} & L_{f d 1} \\
L_{d d 1} & & & L_{f d 1} & L_{d 1 d 1} & \\
& L_{q q 1} & & & L_{q 1 q 1} & L_{q 1 q 2} \\
& L_{q q 2} & & & L_{q 1 q 2} & L_{q 2 q 2}
\end{array}\right] }
\end{aligned}
$$

(zero entries have been left empty for legibility)
with:

$$
\begin{aligned}
L_{d d} & =L_{0}+L_{m}+\frac{3}{2} L_{1} \\
L_{q q} & =L_{0}+L_{m}-\frac{3}{2} L_{1} \\
L_{d f} & =\sqrt{\frac{3}{2}} L_{a f} \\
L_{d d 1} & =\sqrt{\frac{3}{2}} L_{a d 1} \\
L_{q q 1} & =\sqrt{\frac{3}{2}} L_{a q 1} \\
L_{q q 2} & =\sqrt{\frac{3}{2}} L_{a q 2} \\
L_{o o} & =L_{0}-2 L_{m}
\end{aligned}
$$

- All components are independent of the rotor position θ_{r}. That was expected !
- There is no magnetic coupling between d and q axes (this was already assumed in $\boldsymbol{L}_{T r}$ and $\boldsymbol{L}_{r r}$: zero mutual inductances between coils with orthogonal axes).

Leaving aside the o component and grouping (d, f, d_{1}), on one hand, and (q, q_{1}, q_{2}), on the other hand:

$$
\begin{aligned}
& {\left[\begin{array}{c}
v_{d} \\
-v_{f} \\
0
\end{array}\right] }=-\left[\begin{array}{lll}
R_{a} & & \\
& R_{f} & \\
& & R_{d 1}
\end{array}\right]\left[\begin{array}{c}
i_{d} \\
i_{f} \\
i_{d 1}
\end{array}\right]-\left[\begin{array}{c}
\dot{\theta}_{r} \psi_{q} \\
0 \\
0
\end{array}\right]-\frac{d}{d t}\left[\begin{array}{c}
\psi_{d} \\
\psi_{f} \\
\psi_{d 1}
\end{array}\right] \\
& {\left[\begin{array}{c}
v_{q} \\
0 \\
0
\end{array}\right]=-\left[\begin{array}{lll}
R_{a} & & \\
& R_{q 1} & \\
& & R_{q 2}
\end{array}\right]\left[\begin{array}{c}
i_{q} \\
i_{q 1} \\
i_{q 2}
\end{array}\right]+\left[\begin{array}{c}
\dot{\theta}_{r} \psi_{d} \\
0 \\
0
\end{array}\right]-\frac{d}{d t}\left[\begin{array}{c}
\psi_{q} \\
\psi_{q 1} \\
\psi_{q 2}
\end{array}\right] }
\end{aligned}
$$

with the following flux-current relations:

$$
\begin{aligned}
& {\left[\begin{array}{c}
\psi_{d} \\
\psi_{f} \\
\psi_{d_{1}}
\end{array}\right]=\left[\begin{array}{lll}
L_{d d} & L_{d f} & L_{d d 1} \\
L_{d f} & L_{f f} & L_{f d 1} \\
L_{d d 1} & L_{f d 1} & L_{d 1 d 1}
\end{array}\right]\left[\begin{array}{c}
i_{d} \\
i_{f} \\
i_{d 1}
\end{array}\right]} \\
& {\left[\begin{array}{c}
\psi_{q} \\
\psi_{q 1} \\
\psi_{q 2}
\end{array}\right]=\left[\begin{array}{ccc}
L_{q q} & L_{q q 1} & L_{q q 2} \\
L_{q q 1} & L_{q 1 q 1} & L_{q 1 q 2} \\
L_{q q 2} & L_{q 1 q 2} & L_{q 2 q 2}
\end{array}\right]\left[\begin{array}{c}
i_{q} \\
i_{q 1} \\
i_{q 2}
\end{array}\right]}
\end{aligned}
$$

Energy, power and torque

Balance of power at stator:

$$
p_{T}+p_{J s}+\frac{d W_{m s}}{d t}=p_{r \rightarrow s}
$$

p_{T} : three-phase instantaneous power leaving the stator
$p_{J_{s}}$: Joule losses in stator windings
$W_{m s}$: magnetic energy stored in the stator windings
$p_{r \rightarrow s}$: power transfer from rotor to stator (mechanical ? electrical ?)
Three-phase instantaneous power leaving the stator :

$$
\begin{gathered}
p_{T}(t)=v_{a} i_{a}+v_{b} i_{b}+v_{c} i_{c}=\mathbf{v}_{T}^{T} \boldsymbol{i}_{T}=\underbrace{\left(\boldsymbol{v}_{P}^{T} \mathcal{P}_{d} \mathcal{P}^{T}+R_{a} i_{q}^{2}+R_{a} i_{o}^{2}\right)}_{p_{s}}-\underbrace{\left(i_{d} \frac{d \psi_{d}}{d t}+i_{q} \frac{d \psi_{q}}{d t}+i_{o} \frac{d \psi_{o}}{d t}\right)}_{d W_{m s}^{T} \boldsymbol{i}_{P}=v_{d} i_{d}+v_{q} i_{q}+v_{o} i_{o}}+\dot{\theta}_{r}\left(\psi_{d} i_{q}-\psi_{q} i_{d}\right) \\
\Rightarrow p_{r \rightarrow s}=\dot{\theta}_{r}\left(\psi_{d} i_{q}-\psi_{q} i_{d}\right)
\end{gathered}
$$

Balance of power at rotor:

$$
P_{m}+p_{f}=p_{J r}+\frac{d W_{m r}}{d t}+p_{r \rightarrow s}+\frac{d W_{c}}{d t}
$$

P_{m} : mechanical power provided by the turbine
p_{f} : electrical power provided to the field winding (by the excitation system)
$p_{J_{r}}$: Joule losses in the rotor windings
$W_{m r}$: magnetic energy stored in the rotor windings
W_{c} : kinetic energy of all rotating masses.

Instantaneous power provided to field winding:

$$
\begin{aligned}
p_{f} & =v_{f} i_{f}=v_{f} i_{f}+v_{d 1} i_{d 1}+v_{q 1} i_{q 1}+v_{q 2} i_{q 2} \\
& =\underbrace{\left(R_{f} i_{f}^{2}+R_{d 1} i_{d 1}^{2}+R_{q 1} i_{q 1}^{2}+R_{q 2} i_{q 2}^{2}\right)}_{p_{J r}}+\underbrace{i_{f} \frac{d \psi_{f}}{d t}+i_{d 1} \frac{d \psi_{d 1}}{d t}+i_{q 1} \frac{d \psi_{q 1}}{d t}+i_{q 2} \frac{d \psi_{q 2}}{d t}}_{d W_{m r} / d t}
\end{aligned}
$$

$$
P_{m}-\frac{d W_{c}}{d t}=\dot{\theta}_{r}\left(\psi_{d} i_{q}-\psi_{q} i_{d}\right)
$$

Equation of rotor motion:

$$
\mathcal{I} \frac{d^{2} \theta_{r}}{d t^{2}}=T_{m}-T_{e}
$$

\mathcal{I} : moment of inertia of all the rotating masses
T_{m} : mechanical torque applied to the rotor by the turbine
T_{e} : electromagnetic torque applied to the rotor by the generator.
Multiplying the above equation by $\dot{\theta}_{r}$:

$$
\begin{aligned}
\mathcal{I} \dot{\theta}_{r} \ddot{\theta}_{r} & =\dot{\theta}_{r} T_{m}-\dot{\theta}_{r} T_{e} \\
\frac{d W_{c}}{d t} & =P_{m}-\dot{\theta}_{r} T_{e}
\end{aligned}
$$

P_{m} : mechanical power provided by the turbine.
Hence, the (compact and elegant!) expression of the electromagnetic torque is:

$$
T_{e}=\psi_{d} i_{q}-\psi_{q} i_{d}
$$

Note. The power transfer $p_{r \rightarrow s}$ from rotor to stator is of mechanical nature only.

The various components of the torque T_{e}

$$
T_{e}=L_{d d} i_{d} i_{q}+L_{d f} i_{f} i_{q}+L_{d d 1} i_{d 1} i_{q}-L_{q q} i_{q} i_{d}-L_{q q 1} i_{q 1} i_{d}-L_{q q 2} i_{q 2} i_{d}
$$

$\left(L_{d d}-L_{q q}\right) i_{d} i_{q}$: synchronous torque due to rotor saliency

- exists in salient-pole machines only
- even without excitation ($i_{f}=0$), the rotor tends to align its direct axis with the axis of the rotating magnetic field created by the stator currents, offering to the latter a longer path in iron
- a significant fraction of the total torque in a salient-pole generator.
$L_{d d_{1}} i_{d 1} i_{q}-L_{q q 1} i_{q 1} i_{d}-L_{q q 2} i_{q 2} i_{d}$: damping torque
- due to currents induced in the amortisseurs
- zero in steady-state operation.
$L_{d f} i_{f} i_{q}$: only component involving the field current i_{f}
- the main part of the total torque in steady-state operation
- in steady state, it is the synchronous torque due to excitation
- during transients, the field winding also contributes to the damping torque.

The synchronous machine in steady state

- Balanced three-phase currents of angular frequency ω_{N} flow in the stator windings
- a direct current flows in the field winding subjected to a constant excitation voltage:

$$
i_{f}=\frac{V_{f}}{R_{f}}
$$

- the rotor rotates at the synchronous speed:

$$
\theta_{r}=\theta_{r}^{o}+\omega_{N} t
$$

- no current is induced in the other rotor circuits:

$$
i_{d 1}=i_{q 1}=i_{q 2}=0
$$

Operation with stator opened

$$
\begin{aligned}
i_{a} & =i_{b}=i_{c}=0 \\
\Rightarrow \quad i_{d} & =i_{q}=i_{o}=0 \\
\Rightarrow \quad \psi_{d} & =L_{d f} i_{f} \quad \text { and } \quad \psi_{q}=0
\end{aligned}
$$

Park equations:

$$
\begin{aligned}
& v_{d}=0 \\
& v_{q}=\omega_{N} \psi_{d}=\omega_{N} L_{d f} i_{f}
\end{aligned}
$$

Getting back to the stator voltages, e.g. in phase a :

$$
v_{a}(t)=\sqrt{\frac{2}{3}} \omega_{N} L_{d f} i_{f} \sin \left(\theta_{r}^{o}+\omega_{N} t\right)=\sqrt{2} E_{q} \sin \left(\theta_{r}^{o}+\omega_{N} t\right)
$$

$E_{q}=\frac{\omega_{N} L_{d f} i_{f}}{\sqrt{3}}=$ e.m.f. proportional to excitation current
$=$ RMS voltage at the terminal of the opened machine.

Operation under load

$$
\begin{aligned}
& v_{a}(t)= \sqrt{2} V \cos \left(\omega_{N} t+\theta\right) \quad v_{b}(t)=\sqrt{2} V \cos \left(\omega_{N} t+\theta-\frac{2 \pi}{3}\right) \quad v_{c}(t)=\sqrt{2} V \cos \left(\omega_{N} t+\theta+\frac{2 \pi}{3}\right) \\
& i_{a}(t)=\sqrt{2} I \cos \left(\omega_{N} t+\psi\right) \quad i_{b}(t)=\sqrt{2} I \cos \left(\omega_{N} t+\psi-\frac{2 \pi}{3}\right) \quad i_{c}(t)=\sqrt{2} I \cos \left(\omega_{N} t+\psi+\frac{2 \pi}{3}\right) \\
& i_{d}= \sqrt{\frac{2}{3}} \sqrt{2} I\left[\cos \left(\theta_{r}^{\circ}+\omega_{N} t\right) \cos \left(\omega_{N} t+\psi\right)+\cos \left(\theta_{r}^{\circ}+\omega_{N} t-\frac{2 \pi}{3}\right) \cos \left(\omega_{N} t+\psi-\frac{2 \pi}{3}\right)\right. \\
&\left.+\cos \left(\theta_{r}^{\circ}+\omega_{N} t+\frac{2 \pi}{3}\right) \cos \left(\omega_{N} t+\psi+\frac{2 \pi}{3}\right)\right] \\
&= \frac{l}{\sqrt{3}}\left[\cos \left(\theta_{r}^{\circ}+2 \omega_{N} t+\psi\right)+\cos \left(\theta_{r}^{\circ}+2 \omega_{N} t+\psi-\frac{4 \pi}{3}\right)+\cos \left(\theta_{r}^{\circ}+2 \omega_{N} t+\psi+\frac{4 \pi}{3}\right)\right. \\
&\left.+3 \cos \left(\theta_{r}^{\circ}-\psi\right)\right]=\sqrt{3} I \cos \left(\theta_{r}^{\circ}-\psi\right)
\end{aligned}
$$

Similarly:

$$
\begin{aligned}
i_{q} & =\sqrt{3} / \sin \left(\theta_{r}^{\circ}-\psi\right) & & i_{o}=0 \\
v_{d} & =\sqrt{3} V \cos \left(\theta_{r}^{\circ}-\theta\right) & & v_{q}=\sqrt{3} V \sin \left(\theta_{r}^{\circ}-\theta\right) \quad v_{o}=0
\end{aligned}
$$

In steady-state, i_{d} and i_{q} are constant. This was expected!

Magnetic flux in the d and q windings:

$$
\begin{aligned}
\psi_{d} & =L_{d d} i_{d}+L_{d f} i_{f} \\
\psi_{q} & =L_{q q} i_{q}
\end{aligned}
$$

The electromagnetic torque:

$$
T_{e}=\psi_{d} i_{q}-\psi_{q} i_{d}
$$

is constant. This is important from mechanical viewpoint (no vibration!).

Park equations:

$$
\begin{aligned}
& v_{d}=-R_{a} i_{d}-\omega_{N} L_{q q} i_{q}=-R_{a} i_{d}-X_{q} i_{q} \\
& v_{q}=-R_{a} i_{q}+\omega_{N} L_{d d} i_{d}+\omega_{N} L_{d f} i_{f}=-R_{a} i_{q}+X_{d} i_{d}+\sqrt{3} E_{q} \\
& v_{0}=0
\end{aligned}
$$

$X_{d}=\omega_{N} L_{d d}$: direct-axis synchronous reactance $X_{q}=\omega_{N} L_{q q}:$ quadrature-axis synchronous reactance

Phasor diagram

The Park equations become:

$$
\begin{aligned}
V \cos \left(\theta_{r}^{\circ}-\theta\right) & =-R_{a} I \cos \left(\theta_{r}^{\circ}-\psi\right)-X_{q} I \sin \left(\theta_{r}^{\circ}-\psi\right) \\
V \sin \left(\theta_{r}^{\circ}-\theta\right) & =-R_{a} I \sin \left(\theta_{r}^{\circ}-\psi\right)+X_{d} I \cos \left(\theta_{r}^{\circ}-\psi\right)+E_{q}
\end{aligned}
$$

which are the projections on the d and q axes of the complex equation:

Particular case : round-rotor machine: $\quad X_{d}=X_{q}=X$

$$
\bar{E}_{q}=\bar{V}+R_{a} \bar{I}+j X\left(\bar{I}_{d}+\bar{I}_{q}\right)=\bar{V}+R_{a} \bar{I}+j X \bar{I}
$$

Such an equivalent circuit cannot be derived for a salient-pole generator.

Powers

$$
\begin{aligned}
\bar{E}_{q} & =E_{q} e^{j\left(\theta_{r}^{\circ}-\frac{\pi}{2}\right)} \\
\bar{I}_{d} & =I \cos \left(\theta_{r}^{\circ}-\psi\right) e^{j \theta_{r}^{\circ}}=\frac{i_{d}}{\sqrt{3}} e^{j \theta_{r}^{\circ}} \quad \bar{I}_{q}=I \sin \left(\theta_{r}^{\circ}-\psi\right) e^{j\left(\theta_{r}^{\circ}-\frac{\pi}{2}\right)}=-j \frac{i_{q}}{\sqrt{3}} \theta^{j \theta_{r}^{\circ}} \\
\bar{I} & =\bar{I}_{d}+\bar{I}_{q}=\left(\frac{i_{d}}{\sqrt{3}}-j \frac{i_{q}}{\sqrt{3}}\right) e^{j \theta_{r}^{\circ}} \\
\bar{V}_{d} & =V \cos \left(\theta_{r}^{\circ}-\theta\right) e^{j \theta_{r}^{\circ}}=\frac{v_{d}}{\sqrt{3}}{ }^{j \theta_{r}^{\circ}} \quad \bar{V}_{q}=V \sin \left(\theta_{r}^{\circ}-\theta\right) e^{j\left(\theta_{r}^{\circ}-\frac{\pi}{2}\right)}=-j \frac{V_{q}}{\sqrt{3}} e^{j \theta_{r}^{\circ}} \\
\bar{V} & =\bar{V}_{d}+\bar{V}_{q}=\left(\frac{v_{d}}{\sqrt{3}}-j \frac{v_{q}}{\sqrt{3}}\right) e^{j \theta_{r}^{\circ}}
\end{aligned}
$$

Three-phase complex power produced by the machine:

$$
\begin{aligned}
S=3 \bar{V} \overline{I^{\star}} & =3\left(\frac{v_{d}}{\sqrt{3}}-j \frac{v_{q}}{\sqrt{3}}\right)\left(\frac{i_{d}}{\sqrt{3}}+j \frac{i_{q}}{\sqrt{3}}\right)=\left(v_{d}-j v_{q}\right)\left(i_{d}+j i_{q}\right) \\
& \Rightarrow \quad P=v_{d} i_{d}+v_{q} i_{q} \quad Q=v_{d} i_{q}-v_{q} i_{d}
\end{aligned}
$$

P and Q as functions of V, E_{q} and the internal angle δ, \quad assuming $R_{a} \simeq 0$?

$$
\begin{aligned}
v_{d} & =-X_{q} i_{q} \Rightarrow i_{q}=-\frac{v_{d}}{X_{q}} \\
v_{q} & =X_{d} i_{d}+\sqrt{3} E_{q} \Rightarrow i_{d}=\frac{v_{q}-\sqrt{3} E_{q}}{X_{d}} \\
v_{d} & =\sqrt{3} V \cos \left(\theta_{r}^{\circ}-\theta\right)=-\sqrt{3} V \sin \delta \\
v_{q} & =\sqrt{3} V \sin \left(\theta_{r}^{\circ}-\theta\right)=\sqrt{3} V \cos \delta
\end{aligned}
$$

$P=3 \frac{E_{q} V}{X_{d}} \sin \delta+\frac{3 V^{2}}{2}\left(\frac{1}{X_{q}}-\frac{1}{X_{d}}\right) \sin 2 \delta \quad Q=3 \frac{E_{q} V}{X_{d}} \cos \delta-3 V^{2}\left(\frac{\sin ^{2} \delta}{X_{q}}+\frac{\cos ^{2} \delta}{X_{d}}\right)$
Case of a round-rotor machine: $\quad P=3 \frac{E_{q} V}{X} \sin \delta \quad Q=3 \frac{E_{q} V}{X} \cos \delta-3 \frac{V^{2}}{X}$

Nominal values, per unit system and orders of magnitudes

Stator

- nominal voltage U_{N} : voltage for which the machine has been designed (in particular its insulation).
The real voltage may deviate from this value by a few \%
- nominal current I_{N} : current for which machine has been designed (in particular the cross-section of its conductors).
Maximum current that can be accepted without limit in time
- nominal apparent power: $S_{N}=\sqrt{3} U_{N} I_{N}$.

Conversion of parameters in per unit values:

- base power: $S_{B}=S_{N}$
- base voltage: $\quad V_{B}=U_{N} / \sqrt{3}$
- base current: $I_{B}=S_{N} / 3 V_{B}$
- base impedance: $Z_{B}=3 V_{B}^{2} / S_{B}$.

Orders of magnitude
(more typical of machines with a nominal power above 100 MVA) (pu values on the machine base)

	round-rotor machines	salient-pole machines
resistance R_{a}	0.005 pu	
direct-axis reactance X_{d}	$1.5-2.5 \mathrm{pu}$	$0.9-1.5 \mathrm{pu}$
quadrature-axis reactance X_{q}	$1.5-2.5 \mathrm{pu}$	$0.5-1.1 \mathrm{pu}$

Park (equivalent) windings

- base power: S_{N}
- base voltage: $\sqrt{3} V_{B}$
- base current: $\frac{S_{N}}{\sqrt{3} V_{B}}=\sqrt{3} I_{B} \quad$ (single-phase formula !)

With this choice:

$$
i_{d p u}=\frac{i_{d}}{\sqrt{3} I_{B}}=\frac{\sqrt{3}}{\sqrt{3}} \frac{I}{I_{B}} \cos \left(\theta_{r}^{\circ}-\psi\right)=I_{p u} \cos \left(\theta_{r}^{\circ}-\psi\right)
$$

Similarly:

$$
\begin{gathered}
i_{q p u}=I_{p u} \sin \left(\theta_{r}^{o}-\psi\right) \quad v_{d p u}=V_{p u} \cos \left(\theta_{r}^{\circ}-\theta\right) \quad v_{q p u}=V_{p u} \sin \left(\theta_{r}^{\circ}-\theta\right) \\
\bar{l}=\bar{I}_{d}+\bar{I}_{q}=\left(i_{d}-j i_{q}\right) e^{j \theta_{r}^{\circ}} \quad \bar{V}=\bar{V}_{d}+\bar{V}_{q}=\left(v_{d}-j v_{q}\right) e^{j \theta_{r}^{\circ}}
\end{gathered}
$$

- All coefficients $\sqrt{3}$ have disappeared
- hence, the Park currents (resp. voltages) are exactly the projections on the machine d and q axes of the phasor \bar{l} (resp. \bar{V})

