ELEC0029 - Electric power systems analysis and operation Analysis of balanced faults

Thierry Van Cutsem
t.vancutsem@ulg.ac.be

March 2020

Types of faults

single phase to ground monophasé

double phase to ground biphasé terre

phase to phase biphasé

three-phase triphasé

Single phase to ground faults :

- the most frequent.

Example: Belgian 400-kV grid : 91 \% of faults (2006-2014)
Three-phase faults :

- much less frequent. Example : Belgian 400-kV grid : only 2% of faults
- but very often the most severe
- worst case that the network must be able to withstand.

This chapter focuses on three-phase faults with the same (in particular zero) resistance between each phase and the ground

- the network remains electrically balanced
\rightarrow balanced fault analysis
- per-phase analysis can still be used.

Behaviour of the synchronous machine during a three-phase fault

Please refer to the separate lecture:
Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients)
where the equivalent circuit of the machine is derived:

The stator resistance being small, it is usually neglected in short-circuit calculations

Computation of three-phase short-circuit currents

Motivation

- dimensioning the circuit breakers: breaking capability must be sufficient
- adjusting the settings of protections:
- must not act in normal operation
- must act in case of a fault.

Assumptions

- network with N nodes
- n synchronous machines connected to nodes 1 to n (for simplicity)
- each synchronous machine represented by its equivalent circuit ($\bar{E}^{\prime \prime}, X^{\prime \prime}$) (stator resistance neglected)
- loads represented by constant (shunt) admittances, obtained from the pre-fault operating conditions:

$$
Y_{c}=\frac{P^{\text {pre }}-j Q^{\text {pre }}}{\left[V^{\text {pre }}\right]^{2}}
$$

- node f subject to a short-circuit with impedance Z_{f}.
machines with Thévenin equivalents

machines with Norton equivalents

$$
\overline{\boldsymbol{I}}=\boldsymbol{Y} \overline{\boldsymbol{V}}
$$

$\overline{\boldsymbol{I}}$: vector of complex currents injected in the N buses, each current counted positive if it enters the network
$\overline{\boldsymbol{V}}$: vector of complex voltages at the N buses
\boldsymbol{Y} : bus (or nodal) admittance matrix

Determination of the bus (or nodal) admittance matrix

phase shifting non phase shifting

obtain 2×2 admittance matrix of two-port

assemble the two-port admittance matrices according to network topology \downarrow
add admittances of shunts on the diagonal of \mathbf{Y}

Admittance matrix of the two-port representing a line or a cable

$$
\begin{aligned}
& \bar{I}_{1}=j \frac{\omega C}{2} \bar{V}_{1}+\frac{1}{R+j X}\left(\bar{V}_{1}-\bar{V}_{2}\right)=\left(j \frac{\omega C}{2}+\frac{1}{R+j X}\right) \bar{V}_{1}-\frac{1}{R+j X} \bar{V}_{2} \\
& \bar{T}_{2}=j \frac{\omega C}{2} \bar{V}_{2}+\frac{1}{R+j X}\left(\bar{V}_{2}-\bar{V}_{1}\right)=-\frac{1}{R+j X} \bar{V}_{1}+\left(j \frac{\omega C}{2}+\frac{1}{R+j X}\right) \bar{V}_{1}
\end{aligned}
$$

and hence:

$$
\mathbf{Y}=\left[\begin{array}{cc}
j \frac{\omega C}{2}+\frac{1}{R+j X} & -\frac{1}{R+j X} \\
-\frac{1}{R+j X} & j \frac{\omega C}{2}+\frac{1}{R+j X}
\end{array}\right]
$$

Admittance matrix of the two-port representing a transformer

 (including the case of a phase shifter)
$\bar{V}_{b}=\bar{n} \bar{V}_{a} \quad \bar{l}_{a}=\bar{n}^{\star} \bar{l}_{b}$

$$
\begin{aligned}
& \bar{I}_{1}=j B \bar{V}_{1}+\frac{1}{R+j X}\left(\bar{V}_{1}-\frac{\bar{V}_{2}}{\bar{n}}\right)=\left(j B+\frac{1}{R+j X}\right) \bar{V}_{1}-\frac{1}{(R+j X) \bar{n}} \bar{V}_{2} \\
& \bar{I}_{2}=\frac{1}{\bar{n}^{\star}}\left(\frac{\bar{V}_{2}}{\bar{n}}-\bar{V}_{1}\right) \frac{1}{R+j X}=-\frac{1}{(R+j X) \bar{n}^{\star}} \bar{V}_{1}+\frac{1}{(R+j X) n^{2}} \bar{V}_{2}
\end{aligned}
$$

and hence:

$$
\mathbf{Y}=\left[\begin{array}{cc}
j B+\frac{1}{R+j X} & -\frac{1}{(R+j X) \bar{n}} \\
-\frac{1}{(R+j X) \bar{n}^{\star}} & \frac{1}{(R+j X) n^{2}}
\end{array}\right]
$$

non symmetric if the transformer ratio is a complex number (phase shifter)

Assembling the two-port admittance matrices according to topology

For an N-bus system:

- initialize \boldsymbol{Y} to a zero matrix of dimensions $N \times N$
- determine the (2×2) admittance matrices of the two-ports representing the lines, the cables and the transformers
- add the four terms of each of those matrices to the proper terms of \boldsymbol{Y}, taking into account the numbering of the terminal nodes
- add the admittances of machines, loads and shunt compensation elements to the corresponding diagonal terms of \boldsymbol{Y}.

Example on a four-bus network

$$
\mathbf{Y}=\left[\begin{array}{cccc}
Y_{11}^{a b}+Y_{11}^{a c} & Y_{12}^{a b} & Y_{12}^{a c} & 0 \\
Y_{21}^{a b} & Y_{22}^{a b}+Y_{11}^{b c}+Y_{11}^{b d} & Y_{12}^{b c} & Y_{12}^{b d} \\
Y_{21}^{a c} & Y_{21}^{b c} & Y_{22}^{a c}+Y_{22}^{b c} & 0 \\
0 & Y_{21}^{b d} & 0 & Y_{22}^{b d}
\end{array}\right]
$$

Method by inspection

- Lines and cables are represented by their pi-equivalents
- the equivalent circuits of transformers without phase shift (real ratio n) are replaced by their corresponding pi-equivalents:

- those pi-equivalents are assembled according to the network topology
- together with the admittances of shunts
- the terms of \boldsymbol{Y} are determined by inspection as follows:
- the off-diagonal term $[Y]_{i j}(i, j=1, \ldots, N ; i \neq j)$ is the sum of the admittances of all the elements connecting nodes i and j, sign changed
- the diagonal term $[\boldsymbol{Y}]_{i i}(i=1, \ldots, N)$ is the sum of the admittances of all the elements connected to node i.

Exercise. Use the method by inspection to check that the transformer pi-equivalent shown above has the (2×2) admittance matrix given in slide $\# 8$.

Computation of during-fault voltages by superposition

From the during-fault voltages, the current in any component can be computed.
The fault admittance $Y_{f}=\frac{1}{Z_{f}}$ is not included in \boldsymbol{Y}. Indeed:

- many possible fault locations have to be analyzed.

Including Y_{f} in \boldsymbol{Y} would require modifying \boldsymbol{Y} for each fault location

- "solid" faults are considered (as worst cases): $\quad Z_{f}=0 \Rightarrow Y_{f} \rightarrow \infty$ cannot be included in \boldsymbol{Y} !

The derivation which follows:

- uses the \boldsymbol{Y} matrix relative to the pre-fault configuration of the network
- encompasses the case $Z_{f}=0$.

Under the combined effect of $\left(\bar{I}_{1}, \bar{l}_{2}, \ldots, \bar{I}_{n}\right)$ and \bar{I}_{f}, the voltages $\overline{\boldsymbol{V}}$ are such that:

$$
\boldsymbol{Y} \overline{\boldsymbol{V}}=\left[\begin{array}{c}
\bar{I}_{1} \\
\bar{l}_{2} \\
\vdots \\
\bar{I}_{n} \\
0 \\
\vdots \\
\vdots \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
\vdots \\
\vdots \\
0 \\
-\bar{l}_{f} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

By superposition :

$$
\begin{equation*}
\overline{\boldsymbol{V}}=\overline{\boldsymbol{V}}^{\text {pre }}+\Delta^{\overline{\boldsymbol{V}}} \tag{1}
\end{equation*}
$$

with:

$$
\boldsymbol{Y} \overline{\boldsymbol{V}}^{\text {pre }}=\left[\begin{array}{c}
\bar{I}_{1} \\
\bar{I}_{2} \\
\vdots \\
\bar{I}_{n} \\
0 \\
\vdots \\
\vdots \\
0
\end{array}\right] \quad \text { and } \quad \boldsymbol{Y} \Delta \overline{\boldsymbol{V}}=-\bar{I}_{f}\left[\begin{array}{c}
0 \\
\vdots \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right]=-\bar{I}_{f} \boldsymbol{e}_{f}
$$

$\overline{\boldsymbol{V}}{ }^{\text {pre }}$: vector of pre-fault bus voltages
$\Delta \bar{V}$: correction accounting for the short-circuit
\boldsymbol{e}_{f} : unit vector (all zero components, except the f-th one equal to 1).
At this step, the value of \bar{I}_{f} is still unknown...

Let us solve provisionally:

$$
\boldsymbol{Y} \overline{\Delta V}^{1}=\boldsymbol{e}_{f}
$$

We have:

$$
\Delta \overline{\boldsymbol{V}}=-\bar{l}_{f} \Delta \overline{\boldsymbol{V}}^{1}
$$

Introducing this result in (1):

$$
\overline{\boldsymbol{V}}=\overline{\boldsymbol{V}}^{\text {pre }}-\bar{l}_{f} \Delta \bar{V}^{1}
$$

The f-th component of this relation is:

$$
\bar{V}_{f}=\bar{V}_{f}^{\text {pre }}-\bar{l}_{f} \Delta \bar{V}_{f}^{1}
$$

Combining with $\bar{V}_{f}=Z_{f} \bar{l}_{f}$ we obtain:

$$
\begin{equation*}
\bar{I}_{f}=\frac{\bar{V}_{f}^{\text {pre }}}{\Delta V_{f}^{1}+Z_{f}} \tag{2}
\end{equation*}
$$

Substituting in (1), the during fault voltages are given by:

$$
\overline{\boldsymbol{V}}=\overline{\boldsymbol{V}}^{\text {pre }}-\frac{\bar{V}_{f}^{\text {pre }}}{\Delta \bar{V}_{f}^{1}+Z_{f}} \bar{\Delta}^{1}
$$

Relation with Thévenin equivalent

Thévenin equivalent seen from node f :

- emf: $\bar{E}_{t h}=\bar{V}_{f}^{\text {pre }}$
- impedance: $Z_{\text {th }}=$ voltage at node f when a unit current is injected in this node, after the other current injectors have been replaced by open-circuits. Thus:

$$
\begin{equation*}
Z_{t h}=\left[\boldsymbol{Y}^{-1} \boldsymbol{e}_{f}\right]_{f}=\left[\Delta^{-} \boldsymbol{V}^{1}\right]_{f}=\Delta^{-} V_{f}^{1} \tag{2}
\end{equation*}
$$

Fault current: $\quad \bar{l}_{f}=\frac{\bar{E}_{t h}}{Z_{t h}+Z_{f}}=\frac{\bar{V}_{f}^{\text {pre }}}{\Delta V_{f}^{1}+Z_{f}} \quad$ which is nothing but Eq.
Another way to obtain $Z_{t h}: \quad Z_{t h}=\left[\boldsymbol{Y}^{-1} \mathbf{e}_{f}\right]_{f}=\left[\boldsymbol{Y}^{-1}\right]_{f f}=[\boldsymbol{Z}]_{f f}$
\boldsymbol{Z} is called the nodal impedance matrix

