ELEC0029 - Electric power systems analysis

Case study: analysis of unbalanced faults in a small distribution network

Thierry Van Cutsem
t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/ ${ }^{\sim}$ vct

March 2020

Objective

Perform a three-phase analysis of the small system shown below subjected to various faults

Procedure

(1) Assuming that the system operates initially in balanced steady state, a power flow computation is performed to obtain the pre-fault voltages
(2) the models and Matlab scripts detailed in the slides "Three-phase analysis of unbalanced systems" are used to assemble the nodal admittance matrix \boldsymbol{Y} and the vector I of injected currents.
This is performed in the Matlab script named case_study_3ph.m
(0) (it is checked that the solution \boldsymbol{V} of $\boldsymbol{Y} \boldsymbol{V}=\boldsymbol{I}$ matches the voltages given by the power flow computation)
(9) the \boldsymbol{Y} matrix is modified to account for the fault
(0) the resulting linear system $\boldsymbol{Y V}=\boldsymbol{I}$ is solved with respect to \boldsymbol{V}, from which all branch currents are computed.

Note. Zero-impedance short-circuits are simulated by adding a very large admittance in the three-phase circuit and adjusting accordingly the term(s) of \boldsymbol{Y}

Three-phase model: bus numbering

System parameters

- Cable B-C
- thermal limit: 24 MVA
- positive-sequence parameters: $R_{+}=0.909 \Omega, X_{+}=1.659 \Omega, B_{+}=645.1 \mu S$
- zero-sequence parameters: $R_{o}=7.87 \Omega, X_{o}=3.470 \Omega, B_{o}=645.1 \mu S$
- Transformer B-A
- nominal apparent (three-phase) power: 27 MVA
- ratio $150-\mathrm{kV}$ voltage / $36-\mathrm{kV}$ voltage $=0.95 \angle 30^{\circ}$
- positive-sequence parameters: $R=0.005, X=0.11, B=0 \mathrm{pu}$
- zero-sequence parameters: $R_{o}=0.005, X_{o}=0.175, B_{o}=0 \mathrm{pu}$
- Transformer C-D
- nominal apparent (three-phase) power: 20 MVA
- ratio $6-\mathrm{kV}$ voltage $/ 36-\mathrm{kV}$ voltage $=1.03 \angle 0$
- positive-sequence parameters: $R=0.006, X=0.10, B=0 \mathrm{pu}$
- zero-sequence parameters: $R_{o}=0.006, X_{o}=0.15, B_{o}=0 \mathrm{pu}$
- Transformer C-E
- nominal apparent (three-phase) power: 10 MVA
- ratio $15-\mathrm{kV}$ voltage / 36-kV voltage $=0.97 \angle 30^{\circ}$
- positive-sequence parameters: $R=0.006, X=0.126, B=0 \mathrm{pu}$
- zero-sequence parameters: $R_{o}=0.006, X_{o}=0.136, B_{o}=0 \mathrm{pu}$
- Generator at bus E
- nominal apparent (three-phase) power: 10 MVA, connected in star
- positive-sequence parameters: $R_{+}=0.005, X_{+}=X^{\prime \prime}=0.13 \mathrm{pu}$
- negative-sequence parameters: $R_{-}=0.01, X_{-}=0.13 \mathrm{pu}$
- zero-sequence parameters: $R_{o}=0.005, X_{o}=0.07 \mathrm{pu}$
- Load at bus D
- connected in star
- 150-kV network equivalent
- short-circuit capacity: 3 GVA

Results of initial power flow computation

bus	A	$\mathrm{V}=1.0000 \mathrm{pu}$	0.00 deg		kV
	$>\mathrm{B}-\mathrm{A}$	$\mathrm{P}=$	9.2 Q=	5.7	> B
	gener A	$\mathrm{P}=$	9.2 Q=	5.7	$\mathrm{Vimp}=1.0000$
bus	B	$\mathrm{V}=1.0293 \mathrm{pu}$	$-1.93 \mathrm{deg}$		kV
	$>\mathrm{B}-\mathrm{A}$	$\mathrm{P}=$	-9.2 Q=	-5.3	$>\mathrm{A}$
	$>\mathrm{B}-\mathrm{C}$	$\mathrm{P}=$	9.2 Q=	5.3	> C
bus	C	$\mathrm{V}=1.0154 \mathrm{pu}$	$-2.33 \mathrm{deg}$		kV
	> $\mathrm{C}-\mathrm{D}$	$\mathrm{P}=$	15.1 Q=	8.5	$>\mathrm{D}$
	$>\mathrm{C}-\mathrm{E}$	$\mathrm{P}=$	-6.0 Q=	-1.5	$>\mathrm{E}$
	$>\mathrm{B}-\mathrm{C}$	$\mathrm{P}=$	-9.1 Q=	-6.9	> B
bus	D	$\mathrm{V}=1.0011 \mathrm{pu}$	$-6.57 \mathrm{deg}$		kV
	> C-D	$\mathrm{P}=$	-15.0 Q $=$	-7.0	> C
	load	$\mathrm{P}=$	15.0 Q $=$	7.0	
bus	E :	$\mathrm{V}=1.0093 \mathrm{pu}$	1.70 deg		kV
	> $\mathrm{C}-\mathrm{E}$	$\mathrm{P}=$	6.0 Q =	2.0	> C
	gener E	$\mathrm{P}=$	6.0 Q=	2.0	$\mathrm{Vimp}=0.0000$

- As explained in course ELEC0014, the phase shifts introduced by transformers are ignored in power flow computations
- hence the real voltage phase angles are obtained by subtracting 30° from the above phase angles at buses B, C and D .

Initial operating point (before any fault)

Line to neutral (or line to ground) voltages (kV and deg)

Initial operating point (before any fault)

Line currents and their algebraic sums (in A and deg)

Three-phase short-circuit without impedance at bus C

Magnitudes of line to neutral (or line to ground) voltages (kV)

Three-phase short-circuit without impedance at bus C

Magnitudes of line currents and of their algebraic sums (A)

Single phase to ground at bus D - neutrals NOT grounded

Magnitudes of line to ground voltages (kV)

Single phase to ground at bus D - neutrals NOT grounded

Magnitudes of line currents and of their algebraic sums (A)

Single phase to ground at bus D - neutral of load grounded with zero impedance

Magnitudes of line to ground voltages (kV)

Single phase to ground at bus D - neutral of load grounded with zero impedance

Magnitudes of line currents and of their algebraic sums (A)

Single phase to ground at bus D - neutrals of load and

 transformers grounded with zero impedanceMagnitudes of line to ground voltages (kV)

Single phase to ground at bus D - neutrals of load and

 transformers grounded with zero impedanceMagnitudes of line currents and of their algebraic sums (A)

Single phase to ground at bus D - one neutral grounded through a "Petersen" coil

Magnitudes of line currents and of their algebraic sums (A)

