

ELEC0029 - Electric power systems analysis

Case study: analysis of unbalanced faults in a small distribution network

Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct

March 2020

Perform a three-phase analysis of the small system shown below subjected to various faults

Procedure

- Assuming that the system operates initially in balanced steady state, a power flow computation is performed to obtain the pre-fault voltages
- the models and Matlab scripts detailed in the slides "Three-phase analysis of unbalanced systems" are used to assemble the nodal admittance matrix Y and the vector I of injected currents.
 This is performed in the Matlab script named case study 2ph m

This is performed in the Matlab script named case_study_3ph.m

- (it is checked that the solution V of YV = I matches the voltages given by the power flow computation)
- the Y matrix is modified to account for the fault
- **()** the resulting linear system YV = I is solved with respect to V, from which all branch currents are computed.

<u>Note</u>. Zero-impedance short-circuits are simulated by adding a very large admittance in the three-phase circuit and adjusting accordingly the term(s) of Y

Three-phase model: bus numbering

System parameters

- Cable B-C
 - thermal limit: 24 MVA
 - positive-sequence parameters: $R_+ = 0.909\Omega$, $X_+ = 1.659\Omega$, $B_+ = 645.1\mu S$
 - zero-sequence parameters: $R_o = 7.87\Omega$, $X_o = 3.470\Omega$, $B_o = 645.1\mu S$
- Transformer B-A
 - nominal apparent (three-phase) power: 27 MVA
 - ratio 150-kV voltage / 36-kV voltage = 0.95 \angle 30°
 - positive-sequence parameters: R = 0.005, X = 0.11, B = 0 pu
 - zero-sequence parameters: $R_o = 0.005$, $X_o = 0.175$, $B_o = 0$ pu
- Transformer C-D
 - nominal apparent (three-phase) power: 20 MVA
 - ratio 6-kV voltage / 36-kV voltage = 1.03 $\angle 0$
 - positive-sequence parameters: R = 0.006, X = 0.10, B = 0 pu
 - zero-sequence parameters: $R_o = 0.006$, $X_o = 0.15$, $B_o = 0$ pu
- Transformer C-E
 - nominal apparent (three-phase) power: 10 MVA
 - ratio 15-kV voltage / 36-kV voltage = 0.97 \angle 30°
 - positive-sequence parameters: R = 0.006, X = 0.126, B = 0 pu
 - zero-sequence parameters: $R_o = 0.006$, $X_o = 0.136$, $B_o = 0$ pu

- Generator at bus E
 - nominal apparent (three-phase) power: 10 MVA, connected in star
 - positive-sequence parameters: $R_+ = 0.005$, $X_+ = X'' = 0.13$ pu
 - negative-sequence parameters: $R_{-} = 0.01$, $X_{-} = 0.13$ pu
 - zero-sequence parameters: $R_o = 0.005$, $X_o = 0.07$ pu
- Load at bus D
 - connected in star
- 150-kV network equivalent
 - short-circuit capacity: 3 GVA

Results of initial power flow computation

bus A :	V= 1.0000 pu	0.00 deg	150.00 kV
> B-A	P=	9.2 Q=	5.7 > B
gener A	P=	9.2 Q=	5.7 Vimp= 1.0000
bus B :	V= 1.0293 pu	-1.93 deg	37.06 kV
> B-A	P=	-9.2 Q=	-5.3 > A
> B-C	P=	9.2 Q=	5.3 > C
bus C :	V= 1.0154 pu	-2.33 deg	36.55 kV
> C-D	P=	15.1 Q=	8.5 > D
> C-E	P=	-6.0 Q=	-1.5 > E
> B-C	P=	-9.1 Q=	-6.9 > B
bus D :	V= 1.0011 pu	-6.57 deg	6.01 kV
> C-D	P=	-15.0 Q=	-7.0 > C
load	P=	15.0 Q=	7.0
bus E :	V= 1.0093 pu	1.70 deg	15.14 kV
> C-E	P=	6.0 Q=	2.0 > C
gener E	P=	6.0 Q=	2.0 Vimp= 0.0000

- As explained in course ELEC0014, the phase shifts introduced by transformers are ignored in power flow computations
- hence the real voltage phase angles are obtained by subtracting 30° from the above phase angles at buses B, C and D.

Initial operating point (before any fault)

Line to neutral (or line to ground) voltages (kV and deg)

Initial operating point (before any fault)

Three-phase short-circuit without impedance at bus C

Three-phase short-circuit without impedance at bus C

Single phase to ground at bus D - neutrals NOT grounded

Single phase to ground at bus D - neutrals NOT grounded

Single phase to ground at bus D - neutral of load grounded with zero impedance

Single phase to ground at bus D - neutral of load grounded with zero impedance

Single phase to ground at bus D - neutrals of load and transformers grounded with zero impedance

Single phase to ground at bus D - neutrals of load and transformers grounded with zero impedance

Single phase to ground at bus D - one neutral grounded through a "Petersen" coil

