LIÈGE université

Sciences Appliquées

ELEC0029 - Electric power systems analysis

Case study: analysis of unbalanced faults in a small distribution network Additional material

Thierry Van Cutsem
t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~ vct

March 2020

Slide 3 (footnote)

Simulation of a fault with a shunt conductance g applied to the faulted bus and phase.

$V_{p r e}$ is the pre-fault voltage, i.e. the voltage without the fault $(g=0)$.
ϵ is a small tolerance, below which the voltage V is considered negligible, i.e. close enough to zero.

The fault calculations can be done with the conductance g_{ϵ}.

Slides 7 and 8

Phase angle of voltage at bus B :

- by the power flow computation: $-1,9 \mathrm{deg}$
- by this computation: $-31,9$ deg

Phase shift due to transformer $\mathrm{A}-\mathrm{B}=30 \mathrm{deg}$

Slide 9

Phase angle of voltage: $-31,9$ deg
Phase angle of current : - 62 deg Three-phase powers entering the cable :

$$
\begin{aligned}
& P=3 \times 21,3910^{3} \times 165,4 \times \cos (-31,9-(-62))=9,18 \mathrm{MW} . \text { OK } \\
& Q=3 \times 21,3910^{3} \times 165,4 \times \sin (-31,9-(-62))=5,32 \mathrm{Mvar} . \text { OK }
\end{aligned}
$$

The slide shows the magnitude of the algebraic sum of currents $=\left|\bar{I}_{a}+\bar{I}_{b}+\bar{I}_{c}\right|$

$$
\left|\bar{I}_{a}+\bar{I}_{b}+\bar{I}_{c}\right| \neq\left|\bar{I}_{a}\right|+\left|\bar{I}_{b}\right|+\left|\bar{I}_{c}\right| \quad!!!!!!
$$

Slides 12 and 13

In the absence of grounding of the neutral, due to the fault, the phase-to-ground voltages of the (non faulted) phases a and b at bus D become equal to the phase-to-phase voltages before the fault.

- the voltage between neutral and ground changes from 0 to $6 / \sqrt{3} \mathrm{kV}$
- voltages elsewhere in the network are not at all affected
- the fault is impossible to detect !
- the absence of grounding is dangerous !

Slides 12 and 13

Slides 14 and 15

Slides 16 and 17

Slide 18

