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Three-phase analysis of unbalanced systems The “traditional” approach

The “traditional” approach

(see Homework # 3)

Assemble the positive-sequence models of the various components (lines,
cables, transformers, loas, generators) according to the network topology

do the same with the negative-sequence models

if needed1, do the same with the zero-sequence models

connect the positive-, negative- and zero-sequence models at the location of
the fault, taking into the nature of this fault (see slides # 43-45 of the
lecture on Symmetrical components)

solve the resulting circuit for voltages and currents

using Fortescue transformation, obtain the corresponding phase voltages and
currents.

1not for a line-to-line fault
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Three-phase analysis of unbalanced systems The approach followed in this lecture

The approach followed in this lecture

For lines, cables, transformers and generators, we consider how to pass from
the symmetric-component model (+,−, o) to the three-phase model (a, b, c)

for the other components, we derive the (a, b, c) model directly

all these individual models are assembled according to the network topology
to build the three-phase bus admittance matrix Y and the vector of
three-phase injected currents Ī of:

Ī = Y V̄ (1)

the fault is taken into account by adding fault admittances to the proper
terms of Y

the linear system (1) is solved to obtain the vector V̄ of phase voltages

from which the currents in (a, b, c) branches are obtained.

For each component, a MATLAB script is available and its use is described.
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Three-phase analysis of unbalanced systems The approach followed in this lecture

Preliminary remarks

All voltages refer to their “local grounds”

as in the lecture on Symmetrical components, the neutrals are eliminated

thus, for an N-bus system, Y is a 3N × 3N matrix

some models require values from an initial power flow computation of the
balanced system

since we are dealing with all three phases2, the per unit system uses the
single-phase base power (see course ELEC0014)

three-phase (SB3,VB) single-phase (SB1 = SB3/3,VB)

SB3 = 3VB IB3 =
√

3UB IB3 SB1 = VB IB1

IB3 =
SB3

3VB
=

SB3√
3UB

IB1 =
SB1

VB
= IB3

ZB3 =
VB

IB3
=

3V 2
B

SB3
=

U2
B

SB3
ZB1 =

VB

IB1
=

V 2
B

SB1
= ZB3

the currents and impedances have the same values in per unit in both bases.

2and no longer with a per-phase analysis
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Three-phase analysis of unbalanced systems The approach followed in this lecture

Numerical example

Consider the generator of Homework # 3 :
nominal apparent power : 5 MVA
positive-sequence reactance X+ : 0.15 pu on the generator three-phase base.

What is the value of X+ on a single-phase base of 1 MVA ?

X+ has the same value in per unit on both :
- the three-phase base power of 5 MVA
- the single-phase base power of 5/3 MVA.

To change to the single-phase base power of 1 MVA, apply the general formula of
change of base given in course ELEC0014 :

Zpu2 = Zpu1
SB2

SB1

(
VB1

VB2

)2

and the requested value is :

0.15
1

5/3
= 0.15

3

5
= 0.09 pu
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Three-phase analysis of unbalanced systems Load

Load

Star-connected load

Input data:

complex power consumed in one phase: P + jQ (in pu)

magnitude of the phase-to-neutral voltage under which this power is
consumed: V (in pu)

impedance between neutral and ground: zn (in pu)

y =
P − jQ

V 2
yn =

1

zn
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Three-phase analysis of unbalanced systems Load

Īa = y(V̄a − V̄n) (2)

Īb = y(V̄b − V̄n) (3)

Īc = y(V̄c − V̄n) (4)

Īa + Īb + Īc = ynV̄n (5)

Adding (2, 3 and 4) and introducing the result in (5) yields:

V̄n =
yV̄a + yV̄b + yV̄c

ytot
with ytot = 3y + yn (6)

Introducing (6) into (2,3,4) and arranging the results in matrix form: Īa
Īb
Īc

 =


y − y2

ytot
− y2

ytot
− y2

ytot

− y2

ytot
y − y2

ytot
− y2

ytot

− y2

ytot
− y2

ytot
y − y2

ytot


︸ ︷︷ ︸

contribution to matrix Y

 V̄a

V̄b

V̄c



Question. Determine the admittance matrix when zn = 0 (“solid” grounding)?
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Three-phase analysis of unbalanced systems Load

Delta-connected load

Input data:

complex power consumed in each branch: P + jQ (in pu)

magnitude of the phase-to-phase voltage under which those powers are
consumed: U (in pu)

y =
P − jQ

U2

8 / 28



Three-phase analysis of unbalanced systems Load

Īa = y(V̄a − V̄b) + y(V̄a − V̄c)

Īb = y(V̄b − V̄a) + y(V̄b − V̄c)

Īc = y(V̄c − V̄a) + y(V̄c − V̄b)

which can be rewritten in matrix form as: Īa
Īb
Īc

 =

 2y −y −y
−y 2y −y
−y −y 2y


︸ ︷︷ ︸

contribution to matrix Y

 V̄a

V̄b

V̄c



Remarks

this admittance matrix is singular because the voltage reference node is not
located in the circuit (“indefinite admittance matrix”)

this is not a problem since it will be combined with other admittance
matrices to form Y .
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Three-phase analysis of unbalanced systems Load

Matlab script Yload.m
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Three-phase analysis of unbalanced systems Balanced Norton equivalent

Balanced Norton equivalent

Input data:

complex power produced by one of the three phases: P + jQ (in pu)
Thévenin impedance: zth (in pu)
complex (phase-to-neutral) voltage of phase a: V̄a (in pu)

Ēa = V̄a + zth
P − jQ

V̄ ?
a

Ēb = a2Ēa Ēc = aĒa
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Three-phase analysis of unbalanced systems Balanced Norton equivalent

Īa = (V̄a − Ēa)/zth

Īb = (V̄b − Ēb)/zth

Īc = (V̄c − Ēc)/zth

which can be rewritten in matrix form as: Īa
Īb
Īc

 =

 1/zth 0 0
0 1/zth 0
0 0 1/zth


︸ ︷︷ ︸
contribution to matrix Y

 V̄a

V̄b

V̄c

−
 Ēa/zth

Ēb/zth
Ēc/zth


︸ ︷︷ ︸

contrib. to vector Ī
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Three-phase analysis of unbalanced systems Balanced Norton equivalent

Matlab script Norton equ.m
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Three-phase analysis of unbalanced systems Generator

Generator

Input data:
positive, negative and zero-sequence impedances: z+, z− and zo (in pu)
impedance between neutral and ground: zn (in pu)
complex power produced by one of the three phases: P + jQ (in pu)
complex (phase-to-neutral) voltage of phase a: V̄a (in pu)
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Three-phase analysis of unbalanced systems Generator

To identify Īnor ,a, Īnor ,b and Īnor ,c we assume initial balanced operating conditions:

V̄− = V̄o = 0 V̄+ = V̄a Ī− = Īo = 0 Ī+ = Īa = −P − jQ

V̄ ?
a

Hence: Ē+ = V̄+ − z+ Ī+ = V̄a + z+
P − jQ

V̄ ?
a

Contribution to vector Ī :  Īnor ,a
Īnor ,b
Īnor ,c

 =

 Ē+/z+

a2 Ē+/z+

a Ē+/z+



Contribution to admittance matrix Y :

YT = TYFT
−1

with:

YF =

 1/z+ 0 0
0 1/z− 0
0 0 1/(zo + 3zn)

 and T =

 1 1 1
a2 a 1
a a2 1
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Three-phase analysis of unbalanced systems Generator

Matlab script Norton gen.m
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Three-phase analysis of unbalanced systems Line or cable

Line or cable

Full three-phase symmetry is assumed.

Input data:

positive-sequence series impedance: z+ = r+ + jx+ (in pu)

zero-sequence series impedance: zo = ro + jxo (in pu)

positive-sequence half shunt susceptance: b+ (in pu)

zero-sequence half shunt susceptance: bo (in pu)
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Three-phase analysis of unbalanced systems Line or cable

It has been shown (see theory): z+ = zs − zm zo = zs + 2zm

from which one obtains: zs =
2z+ + zo

3
zm =

zo − z+

3

and the impedance matrix: Z =

 zs zm zm
zm zs zm
zm zm zs


The voltage-current relations of the series part are: V A − V g

V B − V g

V C − V g

 = Z

 IA
IB
IC

+

 V A′ − V g ′

V B′ − V g ′

V C ′ − V g ′



⇒

 IA
IB
IC

 = Z
−1

 V A − V g

V B − V g

V C − V g

− Z−1

 V A′ − V g ′

V B′ − V g ′

V C ′ − V g ′

 (7)

and

 IA′

IB′

IC ′

 = −

 IA
IB
IC

 = −Z−1

 V A − V g

V B − V g

V C − V g

+ Z
−1

 V A′ − V g ′

V B′ − V g ′

V C ′ − V g ′

 (8)
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Three-phase analysis of unbalanced systems Line or cable

It has been shown (see theory): b+ = bs − bm bo = bs + 2bm

from which one obtains: bs =
2b+ + bo

3
bm =

bo − b+

3

and the admittance matrix: jB = j

 bs bm bm
bm bs bm
bm bm bs


For the shunt part on the left, the voltage-current relations are: I a

I b
I c

 = j B

 V a − V g

V b − V g

V c − V g

+

 IA
IB
IC

 (9)

Similarly, for the shunt part on the right: I a′

I b′

I c′

 = j B

 V a′ − V g

V b′ − V g

V c′ − V g

+

 IA′

IB′

IC ′

 (10)
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Three-phase analysis of unbalanced systems Line or cable

Taking into account that:

V a = V A V b = V B V c = V C V a′ = V A′ V b′ = V B′ V c′ = V C ′

Eqs. (7, 8, 9, 10) can be combined into:

I a
I b
I c

I a′

I b′

I c′


=


jB + Z

−1 −Z−1

−Z−1 jB + Z
−1


︸ ︷︷ ︸

6×6 admittance matrix Y



V a − V g

V b − V g

V c − V g

V a′ − V g ′

V b′ − V g ′

V c′ − V g ′
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Three-phase analysis of unbalanced systems Line or cable

Matlab script Yline.m
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Three-phase analysis of unbalanced systems Transformer

Transformer

Input data:

positive-sequence series impedance: R + jX (in pu)

positive-sequence magnetizing reactance: Xm (in pu)

zero-sequence series impedance: Ro + jXo (in pu)

zero-sequence magnetizing reactance: Xmo (in pu)

impedance neutral - ground on primary and secondary sides: zn1, zn2 (in pu) 3

complex transformer ratio n̄

3not used in some transformers
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Three-phase analysis of unbalanced systems Transformer

Admittance matrix of the positive-sequence equivalent two-port

(Ī+)abc =
1

jXm
(V̄+)abc +

1

R + jX

[
(V̄+)abc −

1

n̄
(V̄+)a′b′c′

]
(Ī+)a′b′c′ =

1

n̄?
1

R + jX

[
1

n̄
(V̄+)a′b′c′ − (V̄+)abc

]
or in matrix form:[

(Ī+)abc
(Ī+)a′b′c′

]
=

[
1

jXm
+ 1

R+jX − 1
n̄

1
R+jX

− 1
n̄?

1
R+jX

1
|n̄|2

1
R+jX

]
︸ ︷︷ ︸

posit.-sequ. admittance matrix

[
(V̄+)abc

(V̄+)a′b′c′

]
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Three-phase analysis of unbalanced systems Transformer

Admittance matrix of the negative-sequence equivalent two-port

Replacing n̄ by n̄? in the positive-sequence admittance matrix:[
(Ī−)abc

(Ī−)a′b′c′

]
=

[ 1
jXm

+ 1
R+jX − 1

n̄?
1

R+jX

− 1
n̄

1
R+jX

1
|n̄|2

1
R+jX

]
︸ ︷︷ ︸

negative-sequ. admittance matrix

[
(V̄−)abc

(V̄−)a′b′c′

]

Admittance matrix of the zero-sequence equivalent two-port

1. Transformer of type Ynd*

[
(Īo)abc

(Īo)a′b′c′

]
=

[
1

jXmo
+ 1

Ro+jXo+3zn1
0

0 0

]
︸ ︷︷ ︸
zero-sequ. admit. matrix

[
(V̄o)abc

(V̄o)a′b′c′

]
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Three-phase analysis of unbalanced systems Transformer

2. Transformer of type Ynyn0

[
(Īo)abc

(Īo)a′b′c′

]
=

[ 1
jXmo

+ 1
Ro+jXo+3zn1+3zn2/n2 − 1

n
1

Ro+jXo+3zn1+3zn2/n2

− 1
n

1
Ro+jXo+3zn1+3zn2/n2

1
n2

1
Ro+jXo+3zn1+3zn2/n2

]
︸ ︷︷ ︸

zero-sequ. admittance matrix

[
(V̄o)abc

(V̄o)a′b′c′

]

3. Transformer of any other type

[
(Īo)abc

(Īo)a′b′c′

]
=

[
1

jXmo
0

0 0

]
︸ ︷︷ ︸

zero-sequ. admit. matrix

[
(V̄o)abc

(V̄o)a′b′c′

]
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Three-phase analysis of unbalanced systems Transformer

Assembling the admittance matrices of all three sequences
(Ī+)abc
(Ī−)abc
(Īo)abc

(Ī+)a′b′c′

(Ī−)a′b′c′

(Īo)a′b′c′

 = YF


(V̄+)abc
(V̄−)abc
(V̄o)abc

(V̄+)a′b′c′

(V̄−)a′b′c′

(V̄o)a′b′c′


with

YF =



1
jXm

+ 1
R+jX 0 0 − 1

n̄
1

R+jX 0 0

0 1
jXm

+ 1
R+jX 0 0 − 1

n̄?
1

R+jX 0

0 0 y11 0 0 y12

− 1
n̄?

1
R+jX 0 0 1

|n̄|2
1

R+jX 0 0

0 − 1
n̄

1
R+jX 0 0 1

|n̄|2
1

R+jX 0

0 0 y21 0 0 y22


where

[
y11 y12

y21 y22

]
is the zero-sequence admittance matrix previously derived.
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Three-phase analysis of unbalanced systems Transformer

Getting back to the a, b, c , a′, b′, c ′ phases

Using the inverse Fortescue transformation:
T
−1

 Īa
Īb
Īc


T
−1

 Īa′

Īb′

Īc′



 = YF


T
−1

 V̄a

V̄b

V̄c


T
−1

 V̄a′

V̄b′

V̄c′




or 

Īa
Īb
Īc

Īa′

Īb′

Īc′


=


T 0

0 T

YF


T
−1 0

0 T
−1


︸ ︷︷ ︸

the sought admittance matrix. Yeah!



V̄a

V̄b

V̄c

V̄a′

V̄b′

V̄c′
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Three-phase analysis of unbalanced systems Transformer

Matlab script Ytrfo.m
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