LIÈGE université

Sciences Appliquées

ELEC0029 - Electric power systems analysis

Three-phase analysis of unbalanced systems

Thierry Van Cutsem
t.vancutsem@ulg.ac.be

March 2020

The "traditional" approach

(see Homework \# 3)

- Assemble the positive-sequence models of the various components (lines, cables, transformers, loas, generators) according to the network topology
- do the same with the negative-sequence models
- if needed ${ }^{1}$, do the same with the zero-sequence models
- connect the positive-, negative- and zero-sequence models at the location of the fault, taking into the nature of this fault (see slides \# 43-45 of the lecture on Symmetrical components)
- solve the resulting circuit for voltages and currents
- using Fortescue transformation, obtain the corresponding phase voltages and currents.

The approach followed in this lecture

- For lines, cables, transformers and generators, we consider how to pass from the symmetric-component model $(+,-, o)$ to the three-phase model (a, b, c)
- for the other components, we derive the (a, b, c) model directly
- all these individual models are assembled according to the network topology to build the three-phase bus admittance matrix \boldsymbol{Y} and the vector of three-phase injected currents $\overline{\boldsymbol{l}}$ of:

$$
\begin{equation*}
\overline{\boldsymbol{I}}=\boldsymbol{Y} \overline{\boldsymbol{V}} \tag{1}
\end{equation*}
$$

- the fault is taken into account by adding fault admittances to the proper terms of \boldsymbol{Y}
- the linear system (1) is solved to obtain the vector $\overline{\boldsymbol{V}}$ of phase voltages
- from which the currents in (a, b, c) branches are obtained.

For each component, a MATLAB script is available and its use is described.

Preliminary remarks

- All voltages refer to their "local grounds"
- as in the lecture on Symmetrical components, the neutrals are eliminated
- thus, for an N-bus system, \boldsymbol{Y} is a $3 N \times 3 N$ matrix
- some models require values from an initial power flow computation of the balanced system
- since we are dealing with all three phases ${ }^{2}$, the per unit system uses the single-phase base power (see course ELEC0014)

$$
\begin{array}{c|c}
\text { three-phase }\left(S_{B 3}, V_{B}\right) & \text { single-phase }\left(S_{B 1}=S_{B 3} / 3, V_{B}\right) \\
\hline S_{B 3}=3 V_{B} I_{B 3}=\sqrt{3} U_{B} I_{B 3} & S_{B 1}=V_{B} I_{B 1} \\
I_{B 3}=\frac{S_{B 3}}{3 V_{B}}=\frac{S_{B 3}}{\sqrt{3} U_{B}} & I_{B 1}=\frac{S_{B 1}}{V_{B}}=I_{B 3} \\
Z_{B 3}=\frac{V_{B}}{I_{B 3}}=\frac{3 V_{B}^{2}}{S_{B 3}}=\frac{U_{B}^{2}}{S_{B 3}} & Z_{B 1}=\frac{V_{B}}{I_{B 1}}=\frac{V_{B}^{2}}{S_{B 1}}=Z_{B 3}
\end{array}
$$

- the currents and impedances have the same values in per unit in both bases.

[^0]
Numerical example

Consider the generator of Homework \# 3 :

- nominal apparent power: 5 MVA
- positive-sequence reactance X_{+}: 0.15 pu on the generator three-phase base.

What is the value of X_{+}on a single-phase base of 1 MVA ?
X_{+}has the same value in per unit on both :

- the three-phase base power of 5 MVA
- the single-phase base power of $5 / 3$ MVA.

To change to the single-phase base power of 1 MVA, apply the general formula of change of base given in course ELEC0014 :

$$
Z_{p u 2}=Z_{p u 1} \frac{S_{B 2}}{S_{B 1}}\left(\frac{V_{B 1}}{V_{B 2}}\right)^{2}
$$

and the requested value is :

$$
0.15 \frac{1}{5 / 3}=0.15 \frac{3}{5}=0.09 \mathrm{pu}
$$

Load

Star-connected load

Input data:

- complex power consumed in one phase: $P+j Q$ (in pu)
- magnitude of the phase-to-neutral voltage under which this power is consumed: V (in pu)
- impedance between neutral and ground: z_{n} (in pu)

$$
y=\frac{P-j Q}{V^{2}} \quad y_{n}=\frac{1}{z_{n}}
$$

$$
\begin{align*}
\bar{l}_{a} & =y\left(\bar{V}_{a}-\bar{V}_{n}\right) \tag{2}\\
\bar{l}_{b} & =y\left(\bar{V}_{b}-\bar{V}_{n}\right) \tag{3}\\
\bar{I}_{c} & =y\left(\bar{V}_{c}-\bar{V}_{n}\right) \tag{4}\\
\bar{I}_{a}+\bar{I}_{b}+\bar{l}_{c} & =y_{n} \bar{V}_{n} \tag{5}
\end{align*}
$$

Adding (2, 3 and 4) and introducing the result in (5) yields:

$$
\begin{equation*}
\bar{V}_{n}=\frac{y \bar{V}_{a}+y \bar{V}_{b}+y \bar{V}_{c}}{y_{\text {tot }}} \quad \text { with } \quad y_{t o t}=3 y+y_{n} \tag{6}
\end{equation*}
$$

Introducing (6) into ($2,3,4$) and arranging the results in matrix form:

$$
\left[\begin{array}{c}
\bar{I}_{a} \\
\bar{I}_{b} \\
\bar{I}_{c}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
y-\frac{y^{2}}{y_{\text {tot }}} & -\frac{y^{2}}{y_{\text {tot }}} & -\frac{y^{2}}{y_{\text {tot }}} \\
-\frac{y^{2}}{y_{\text {tot }}} & y-\frac{y^{2}}{y_{\text {tot }}} & -\frac{y^{2}}{y_{\text {tot }}} \\
-\frac{y^{2} t}{y_{\text {tot }}} & -\frac{y y}{y_{\text {tot }}} & y-\frac{y^{2}}{y_{\text {tot }}}
\end{array}\right]}_{\text {contribution to matrix } \boldsymbol{Y}}\left[\begin{array}{c}
\bar{V}_{a} \\
\bar{V}_{b} \\
\bar{V}_{c}
\end{array}\right]
$$

Question. Determine the admittance matrix when $z_{n}=0$ ("solid" grounding)?

Delta-connected load

Input data:

- complex power consumed in each branch: $P+j Q$ (in pu)
- magnitude of the phase-to-phase voltage under which those powers are consumed: U (in pu)

$$
y=\frac{P-j Q}{U^{2}}
$$

$$
\begin{aligned}
& \bar{I}_{a}=y\left(\bar{V}_{a}-\bar{V}_{b}\right)+y\left(\bar{V}_{a}-\bar{V}_{c}\right) \\
& \bar{I}_{b}=y\left(\bar{V}_{b}-\bar{V}_{a}\right)+y\left(\bar{V}_{b}-\bar{V}_{c}\right) \\
& \bar{I}_{c}=y\left(\bar{V}_{c}-\bar{V}_{a}\right)+y\left(\bar{V}_{c}-\bar{V}_{b}\right)
\end{aligned}
$$

which can be rewritten in matrix form as:

$$
\left[\begin{array}{c}
\bar{I}_{a} \\
\bar{I}_{b} \\
\bar{I}_{c}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
2 y & -y & -y \\
-y & 2 y & -y \\
-y & -y & 2 y
\end{array}\right]}_{\text {contribution to matrix } \boldsymbol{Y}}\left[\begin{array}{c}
\bar{V}_{a} \\
\bar{V}_{b} \\
\bar{V}_{c}
\end{array}\right]
$$

Remarks

- this admittance matrix is singular because the voltage reference node is not located in the circuit ("indefinite admittance matrix")
- this is not a problem since it will be combined with other admittance matrices to form \boldsymbol{Y}.

Matlab script Yload.m

```
function [Yld] \(=\) Yload(triangle, rn, \(x n, p, q, v\) )
\% triangle= 1 if the load is assembled in triangle, \(=0\) if assembled in star
\% rn : neutral resistance (in pu), not used if triangle=1
\% xn : neutral reactance (in pu), not used if triangle=1
    set \(r n\) and \(x n\) to a very large value if the neutral is not grounded
\(p\) : active power (in pu) consumed:
    in one branch of the triangle (if triangle=1)
    in one branch of the star (if triangle=0)
q : reactive power (in pu) consumed:
    in one branch of the triangle (if triangle=1)
    in one branch of the star (if triangle=0)
V : magnitude of voltage (in pu) under which the above powers are consumed
    phase-to-phase voltage if triangle=1, phase-to-neutral if triangle=0
\% Yld : 3x3 admittance matrix of three-phase load
```


Balanced Norton equivalent

voltages and impedances

currents and admittances

Input data:

- complex power produced by one of the three phases: $P+j Q$ (in pu)
- Thévenin impedance: $z_{t h}$ (in pu)
- complex (phase-to-neutral) voltage of phase $a: \bar{V}_{a}$ (in pu)

$$
\bar{E}_{a}=\bar{V}_{a}+z_{t h} \frac{P-j Q}{\bar{V}_{a}^{\star}} \quad \bar{E}_{b}=a^{2} \bar{E}_{a} \quad \bar{E}_{c}=a \bar{E}_{a}
$$

$$
\begin{aligned}
& \bar{I}_{a}=\left(\bar{V}_{a}-\bar{E}_{a}\right) / z_{t h} \\
& \bar{I}_{b}=\left(\bar{V}_{b}-\bar{E}_{b}\right) / z_{t h} \\
& \bar{I}_{c}=\left(\bar{V}_{c}-\bar{E}_{c}\right) / z_{t h}
\end{aligned}
$$

which can be rewritten in matrix form as:

$$
\left[\begin{array}{c}
\bar{I}_{a} \\
\bar{I}_{b} \\
\bar{I}_{c}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
1 / z_{t h} & 0 & 0 \\
0 & 1 / z_{t h} & 0 \\
0 & 0 & 1 / z_{t h}
\end{array}\right]}_{\text {contribution to matrix } \boldsymbol{Y}}\left[\begin{array}{c}
\bar{V}_{a} \\
\bar{V}_{b} \\
\bar{V}_{c}
\end{array}\right]-\underbrace{\left[\begin{array}{c}
\bar{E}_{a} / z_{t h} \\
\bar{E}_{b} / z_{t h} \\
\bar{E}_{c} / z_{t h}
\end{array}\right]}_{\text {contrib. to vector } \overline{\boldsymbol{I}}}
$$

Matlab script Norton_equ.m

```
function [Ynor,Inor] = Norton_equ(rth,xth,p,q,v,theta)
% rth : Thévenin equivalent resistance (in pu)
% xth : Thévenin equivalent reactance (in pu)
% p : active power produced by one phase (in pu)
% q : reactive power produced by one phase (in pu)
% v : magnitude of (phase-to-ground) voltage of phase a (pu)
% theta : phase angle of (phase-to-ground) voltage of phase a (rad)
% Ynor : 3x3 admittance matrix of Norton equivalent
% Inor : 3x1 vector of Norton currents
```


Generator

Input data:

- positive, negative and zero-sequence impedances: z_{+}, z_{-}and z_{o} (in pu)
- impedance between neutral and ground: z_{n} (in pu)
- complex power produced by one of the three phases: $P+j Q$ (in pu)
- complex (phase-to-neutral) voltage of phase a: \bar{V}_{a} (in pu)

To identify $\bar{I}_{\text {nor,a }}, \bar{I}_{\text {nor }, b}$ and $\bar{I}_{\text {nor }, c}$ we assume initial balanced operating conditions:

$$
\bar{V}_{-}=\bar{V}_{o}=0 \quad \bar{V}_{+}=\bar{V}_{a} \quad \bar{l}_{-}=\bar{l}_{0}=0 \quad \bar{l}_{+}=\bar{l}_{a}=-\frac{P-j Q}{\bar{V}_{a}^{\star}}
$$

Hence:

$$
\bar{E}_{+}=\bar{V}_{+}-z_{+} \bar{l}_{+}=\bar{V}_{a}+z_{+} \frac{P-j Q}{\bar{V}_{a}^{\star}}
$$

Contribution to vector $\overline{\boldsymbol{I}}$:

$$
\left[\begin{array}{c}
\bar{I}_{\text {nor }, a} \\
\bar{I}_{\text {nor }, b} \\
\bar{I}_{\text {nor }, c}
\end{array}\right]=\left[\begin{array}{c}
\bar{E}_{+} / z_{+} \\
a^{2} \bar{E}_{+} / z_{+} \\
a \bar{E}_{+} / z_{+}
\end{array}\right]
$$

Contribution to admittance matrix \boldsymbol{Y} :

$$
\boldsymbol{Y}_{T}=\boldsymbol{T} \boldsymbol{Y}_{F} \boldsymbol{T}^{-1}
$$

with:

$$
\boldsymbol{Y}_{F}=\left[\begin{array}{ccc}
1 / z_{+} & 0 & 0 \\
0 & 1 / z_{-} & 0 \\
0 & 0 & 1 /\left(z_{o}+3 z_{n}\right)
\end{array}\right] \quad \text { and } \quad \boldsymbol{T}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
a^{2} & a & 1 \\
a & a^{2} & 1
\end{array}\right]
$$

Matlab script Norton_gen.m

```
function [Ygen,Igen] = Norton_gen(rp,xp,rm,xm,r0,x0,rn,xn,p,q,v,theta)
% rp : direct-sequence resistance (pu)
% xp : direct-sequence reactance (pu)
% rm : negative-sequence resistance (pu)
% xm : negative-sequence reactance (pu)
% r0 : zero-sequence resistance (pu)
% x0 : zero-sequence reactance (pu)
% rn : neutral resistance (pu)
% xn : neutral reactance (pu)
% set rn and xn to a very large value if neutral is not grounded
% p : active power produced by one phase of the generator (pu)
% q : reactive power produced by one phase of the generator (pu)
% v : voltage magnitude (pu), initial value in phase a
% theta : voltage phase angle (rad), initial value in phase a
% Ygen : 3x3 admittance matrix of generator
% Igen : 3x1 vector of Norton equivalent currents (INTO the network)
```


Line or cable

Full three-phase symmetry is assumed.
Input data:

- positive-sequence series impedance: $z_{+}=r_{+}+j x_{+}$(in pu)
- zero-sequence series impedance: $z_{o}=r_{0}+j x_{0}$ (in pu)
- positive-sequence half shunt susceptance: b_{+}(in pu)
- zero-sequence half shunt susceptance: b_{o} (in pu)

It has been shown (see theory): $\quad z_{+}=z_{s}-z_{m} \quad z_{o}=z_{s}+2 z_{m}$
from which one obtains: $\quad z_{s}=\frac{2 z_{+}+z_{o}}{3} \quad z_{m}=\frac{z_{o}-z_{+}}{3}$
and the impedance matrix: $\quad \boldsymbol{Z}=\left[\begin{array}{ccc}z_{s} & z_{m} & z_{m} \\ z_{m} & z_{s} & z_{m} \\ z_{m} & z_{m} & z_{s}\end{array}\right]$
The voltage-current relations of the series part are:

$$
\begin{gather*}
{\left[\begin{array}{c}
\bar{V}_{A}-\bar{V}_{g} \\
\bar{V}_{B}-\bar{V}_{g} \\
\bar{V}_{C}-\bar{V}_{g}
\end{array}\right]=\boldsymbol{Z}\left[\begin{array}{l}
\bar{I}_{A} \\
\bar{I}_{B} \\
\bar{I}_{C}
\end{array}\right]+\left[\begin{array}{l}
\bar{V}_{A^{\prime}}-\overline{\bar{V}}_{g^{\prime}} \\
\bar{V}_{B^{\prime}}-\bar{V}_{g^{\prime}} \\
\bar{V}_{C^{\prime}}-\bar{V}_{g^{\prime}}
\end{array}\right]} \\
\Rightarrow\left[\begin{array}{c}
\bar{I}_{A} \\
\bar{I}_{B} \\
\bar{I}_{C}
\end{array}\right]=\boldsymbol{Z}^{-1}\left[\begin{array}{c}
\bar{V}_{A}-\bar{V}_{g} \\
\bar{V}_{B}-\bar{V}_{g} \\
\bar{V}_{C}-\bar{V}_{g}
\end{array}\right]-\boldsymbol{Z}^{-1}\left[\begin{array}{c}
\bar{V}_{A^{\prime}}-\bar{V}_{g^{\prime}} \\
\bar{V}_{B^{\prime}}-\bar{V}_{g^{\prime}} \\
\bar{V}_{C^{\prime}}-\bar{V}_{g^{\prime}}
\end{array}\right] \tag{7}\\
\text { and }\left[\begin{array}{c}
\bar{I}_{A^{\prime}} \\
\bar{I}_{B^{\prime}} \\
\bar{I}_{C^{\prime}}
\end{array}\right]=-\left[\begin{array}{c}
\bar{I}_{A} \\
\bar{I}_{B} \\
\bar{I}_{C}
\end{array}\right]=-\boldsymbol{Z}^{-1}\left[\begin{array}{c}
\bar{V}_{A}-\bar{V}_{g} \\
\bar{V}_{B}-\bar{V}_{g} \\
\bar{V}_{C}-\bar{V}_{g}
\end{array}\right]+\boldsymbol{Z}^{-1}\left[\begin{array}{c}
\bar{V}_{A^{\prime}}-\bar{V}_{g^{\prime}} \\
\bar{V}_{B^{\prime}}-\bar{V}_{g^{\prime}} \\
\bar{V}_{G^{\prime}}
\end{array}\right] \tag{8}
\end{gather*}
$$

It has been shown (see theory): $\quad b_{+}=b_{s}-b_{m} \quad b_{o}=b_{s}+2 b_{m}$
from which one obtains: $\quad b_{s}=\frac{2 b_{+}+b_{o}}{3} \quad b_{m}=\frac{b_{\circ}-b_{+}}{3}$
and the admittance matrix:

$$
j \boldsymbol{B}=j\left[\begin{array}{lll}
b_{s} & b_{m} & b_{m} \\
b_{m} & b_{s} & b_{m} \\
b_{m} & b_{m} & b_{s}
\end{array}\right]
$$

For the shunt part on the left, the voltage-current relations are:

$$
\left[\begin{array}{c}
\bar{l}_{a} \tag{9}\\
\bar{I}_{b} \\
\bar{I}_{c}
\end{array}\right]=j \boldsymbol{B}\left[\begin{array}{c}
\bar{V}_{a}-\bar{V}_{g} \\
\bar{V}_{b}-\bar{V}_{g} \\
\bar{V}_{c}-\bar{V}_{g}
\end{array}\right]+\left[\begin{array}{c}
\bar{I}_{A} \\
\bar{I}_{B} \\
\bar{I}_{C}
\end{array}\right]
$$

Similarly, for the shunt part on the right:

$$
\left[\begin{array}{c}
\bar{I}_{a^{\prime}} \tag{10}\\
\bar{I}_{b^{\prime}} \\
\bar{I}_{c^{\prime}}
\end{array}\right]=j \boldsymbol{B}\left[\begin{array}{c}
\bar{V}_{a^{\prime}}-\overline{\bar{V}}_{g} \\
\bar{V}_{b^{\prime}}-\bar{V}_{g} \\
\bar{V}_{c^{\prime}}-\bar{V}_{g}
\end{array}\right]+\left[\begin{array}{c}
\bar{I}_{A^{\prime}} \\
\bar{I}_{B^{\prime}} \\
\bar{I}_{c^{\prime}}
\end{array}\right]
$$

Taking into account that:

$$
\bar{V}_{a}=\bar{V}_{A} \quad \bar{V}_{b}=\bar{V}_{B} \quad \bar{V}_{c}=\bar{V}_{C} \quad \bar{V}_{a^{\prime}}=\bar{V}_{A^{\prime}} \quad \bar{V}_{b^{\prime}}=\bar{V}_{B^{\prime}} \quad \bar{V}_{c^{\prime}}=\bar{V}_{C^{\prime}}
$$

Eqs. (7, 8, 9, 10) can be combined into:

$$
\left[\begin{array}{c}
\bar{I}_{a} \\
\bar{I}_{b} \\
\bar{I}_{c} \\
\hline \bar{I}_{a^{\prime}} \\
\bar{I}_{b^{\prime}} \\
\bar{I}_{c^{\prime}}
\end{array}\right]=\underbrace{\left[\begin{array}{c|c}
j \boldsymbol{B}+\boldsymbol{Z}^{-1} & -\boldsymbol{Z}^{-1} \\
-\boldsymbol{Z}^{-1} & j \boldsymbol{B}+\boldsymbol{Z}^{-1}
\end{array}\right]}_{6 \times 6 \text { admittance matrix } \boldsymbol{Y}}\left[\begin{array}{c}
\bar{V}_{a}-\bar{V}_{g} \\
\bar{V}_{b}-\bar{V}_{g} \\
\bar{V}_{c}-\bar{V}_{g} \\
\hline \bar{V}_{a^{\prime}}-\bar{V}_{g^{\prime}} \\
\bar{V}_{b^{\prime}}-\bar{V}_{g^{\prime}} \\
\bar{V}_{c^{\prime}}-\bar{V}_{g^{\prime}}
\end{array}\right]
$$

Matlab script Yline.m

```
function [Yln] = Yline (rp,xp,bp,r0,x0,b0)
% rp : direct-sequence series resistance (pu)
% xp : direct-sequence series reactance (pu)
% bp : direct-sequence half shunt susceptance (pu)
% r0 : zero-sequence series resistance (pu)
% x0 : zero-sequence series reactance (pu)
% b0 : zero-sequence half shunt susceptance (pu)
% Yln : 6x6 admittance matrix of line
```


Transformer

Input data:

- positive-sequence series impedance: $R+j X$ (in pu)
- positive-sequence magnetizing reactance: X_{m} (in pu)
- zero-sequence series impedance: $R_{o}+j X_{o}$ (in pu)
- zero-sequence magnetizing reactance: $X_{m o}$ (in pu)
- impedance neutral - ground on primary and secondary sides: $z_{n 1}, z_{n 2}(\text { in pu })^{3}$
- complex transformer ratio \bar{n}

Admittance matrix of the positive-sequence equivalent two-port

$$
\begin{aligned}
\left(\bar{I}_{+}\right)_{a b c} & =\frac{1}{j X_{m}}\left(\bar{V}_{+}\right)_{a b c}+\frac{1}{R+j X}\left[\left(\bar{V}_{+}\right)_{a b c}-\frac{1}{\bar{n}}\left(\bar{V}_{+}\right)_{a^{\prime} b^{\prime} c^{\prime}}\right] \\
\left(\bar{I}_{+}\right)_{a^{\prime} b^{\prime} c^{\prime}} & =\frac{1}{\bar{n}^{\star}} \frac{1}{R+j X}\left[\frac{1}{\bar{n}}\left(\bar{V}_{+}\right)_{a^{\prime} b^{\prime} c^{\prime}}-\left(\bar{V}_{+}\right)_{a b c}\right]
\end{aligned}
$$

or in matrix form:

$$
\left[\begin{array}{c}
\left(\bar{I}_{+}\right)_{a b c} \\
\left(\bar{I}_{+}\right)_{a{ }^{\prime} b^{\prime} c^{\prime}}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\frac{1}{j X_{m}}+\frac{1}{R+j X} & -\frac{1}{\bar{n}} \frac{1}{R+j X} \\
-\frac{1}{\bar{n}^{\star}} \frac{1}{R+j X} & \frac{1}{|\bar{n}|^{2}} \frac{1}{R+j X}
\end{array}\right]}_{\text {posit.-sequ. admittance matrix }}\left[\begin{array}{c}
\left(\bar{V}_{+}\right)_{a b c} \\
\left(\bar{V}_{+}\right)_{a^{\prime} b^{\prime} c^{\prime}}
\end{array}\right]
$$

Admittance matrix of the negative-sequence equivalent two-port

Replacing \bar{n} by \bar{n}^{\star} in the positive-sequence admittance matrix:

$$
\left[\begin{array}{c}
\left(\bar{I}_{-}\right)_{a b c} \\
\left(\bar{I}_{-}\right)_{a^{\prime} b^{\prime} c^{\prime}}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\frac{1}{j X_{m}}+\frac{1}{R+j X} & -\frac{1}{\bar{n}^{\star}} \frac{1}{R+j X} \\
-\frac{1}{\bar{n}} \frac{1}{R+j X} & \frac{1}{|\bar{n}|^{2}} \frac{1}{R+j X}
\end{array}\right]}_{\text {negative-sequ. admittance matrix }}\left[\begin{array}{c}
\left(\bar{V}_{-}\right)_{a b c} \\
\left(\bar{V}_{-}\right)_{a^{\prime} b^{\prime} c^{\prime}}
\end{array}\right]
$$

Admittance matrix of the zero-sequence equivalent two-port

1. Transformer of type Ynd*

$$
\left[\begin{array}{c}
\left(\bar{I}_{o}\right)_{a b c} \\
\left(\bar{I}_{o}\right)_{a^{\prime} b^{\prime} c^{\prime}}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\frac{1}{j X_{m o}}+\frac{1}{R_{o}+j X_{o}+3 z_{n 1}} & 0 \\
0 & 0
\end{array}\right]}_{\text {zero-sequ. admit. matrix }}\left[\begin{array}{c}
\left(\bar{V}_{o}\right)_{a b c} \\
\left(\bar{V}_{o}\right)_{a^{\prime} b^{\prime} c^{\prime}}
\end{array}\right]
$$

2. Transformer of type Ynyn0

$\left[\begin{array}{c}\left(\bar{I}_{o}\right)_{a b c} \\ \left(\bar{I}_{o}\right)_{a^{\prime} b^{\prime} c^{\prime}}\end{array}\right]=\underbrace{\left[\begin{array}{cc}\frac{1}{j X_{m o}}+\frac{1}{R_{o}+j X_{o}+3 z_{n 1}+3 z_{n 2} / n^{2}} & -\frac{1}{n} \frac{1}{R_{o}+j X_{o}+3 z_{n 1}+3 z_{n 2} / n^{2}} \\ -\frac{1}{n} \frac{1}{R_{o}+j X_{o}+3 z_{n 1}+3 z_{n 2} / n^{2}} & \frac{1}{n^{2}} \frac{1}{R_{o}+j X_{o}+3 z_{n 1}+3 z_{n 2} / n^{2}}\end{array}\right]}_{\text {zero-sequ. admittance matrix }}\left[\begin{array}{c}\left(\bar{V}_{o}\right)_{a b c} \\ \left(\bar{V}_{o}\right)_{a^{\prime} b^{\prime} c^{\prime}}\end{array}\right]$
3. Transformer of any other type

$$
\left[\begin{array}{c}
\left(\bar{I}_{0}\right)_{a b c} \\
\left(\bar{I}_{0}\right)_{a^{\prime} b^{\prime} c^{\prime}}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\frac{1}{j X_{m o}} & 0 \\
0 & 0
\end{array}\right]} \quad\left[\begin{array}{c}
\left(\bar{V}_{o}\right)_{a b c} \\
\left(\bar{V}_{o}\right)_{a^{\prime} b^{\prime} c^{\prime}}
\end{array}\right]
$$

zero-sequ. admit. matrix

Assembling the admittance matrices of all three sequences

$$
\left[\begin{array}{c}
\left(\bar{I}_{+}\right)_{a b c} \\
\left(\bar{I}_{a}\right)_{a b c} \\
\left(\bar{I}_{o} a_{a b c}\right. \\
\left(\bar{I}_{+}\right)_{a^{\prime} b^{\prime} c^{\prime}} \\
\left(\bar{I}_{-}\right)_{a^{\prime} b^{\prime} c^{\prime}} \\
\left(\bar{I}_{o} a_{a^{\prime} b^{\prime} c^{\prime}}\right.
\end{array}\right]=\boldsymbol{Y}_{F}\left[\begin{array}{c}
\left(\bar{V}_{+}\right)_{a b c} \\
\left(\bar{V}_{-}\right)_{a b c} \\
\left(\bar{V}_{o}\right)_{a b c} \\
\left(\bar{V}_{+}\right)_{a^{\prime} b^{\prime} c^{\prime}} \\
\left(\bar{V}_{-}\right)_{a^{\prime} b^{\prime} c^{\prime}} \\
\left(\bar{V}_{o} a_{a^{\prime} b^{\prime} c^{\prime}}\right.
\end{array}\right]
$$

with

$$
\boldsymbol{Y}_{F}=\left[\begin{array}{cccccc}
\frac{1}{j X_{m}}+\frac{1}{R+j X} & 0 & 0 & -\frac{1}{\bar{n}} \frac{1}{R+j X} & 0 & 0 \\
0 & \frac{1}{j X_{m}}+\frac{1}{R+j X} & 0 & 0 & -\frac{1}{\bar{n}^{\star}} \frac{1}{R+j X} & 0 \\
0 & 0 & y_{11} & 0 & 0 & y_{12} \\
-\frac{1}{\bar{n}^{\star}} \frac{1}{R+j X} & 0 & 0 & \frac{1}{|\bar{n}|^{2}} \frac{1}{R+j X} & 0 & 0 \\
0 & -\frac{1}{\bar{n}} \frac{1}{R+j X} & 0 & 0 & \frac{1}{\mid \overline{\bar{n}}} \frac{1}{R+j X} & 0 \\
0 & 0 & y_{21} & 0 & 0 & y_{22}
\end{array}\right]
$$

where $\left[\begin{array}{ll}y_{11} & y_{12} \\ y_{21} & y_{22}\end{array}\right]$ is the zero-sequence admittance matrix previously derived.

Getting back to the $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ phases
Using the inverse Fortescue transformation:

$$
\left[\begin{array}{c}
\boldsymbol{T}^{-1}\left[\begin{array}{c}
\bar{I}_{a} \\
\bar{I}_{b} \\
\bar{I}_{c}
\end{array}\right] \\
\boldsymbol{T}^{-1}\left[\begin{array}{c}
\bar{I}_{a^{\prime}} \\
\bar{I}_{b^{\prime}} \\
\bar{I}_{c^{\prime}}
\end{array}\right]
\end{array}\right]=\boldsymbol{Y}_{F}\left[\begin{array}{c}
\boldsymbol{T}^{-1}\left[\begin{array}{c}
\bar{V}_{a} \\
\bar{V}_{b} \\
\bar{V}_{c}
\end{array}\right] \\
\boldsymbol{T}^{-1}\left[\begin{array}{c}
\bar{V}_{a^{\prime}} \\
\bar{V}_{b^{\prime}} \\
\bar{V}_{c^{\prime}}
\end{array}\right]
\end{array}\right]
$$

or

$$
\left[\begin{array}{c}
\bar{l}_{a} \\
\bar{I}_{b} \\
\bar{l}_{c} \\
\hline \bar{l}_{a^{\prime}} \\
\bar{l}_{b^{\prime}} \\
\bar{I}_{c^{\prime}}
\end{array}\right]=\underbrace{\left[\begin{array}{c|c|c}
\boldsymbol{T} & \mathbf{0} \\
\hline \mathbf{0} & \boldsymbol{T}
\end{array}\right] \boldsymbol{Y}_{F}\left[\begin{array}{c}
\boldsymbol{T}^{-1} \\
\hline \mathbf{0} \\
\hline
\end{array}\right]}_{\text {the sought admittance matrix. Yeah! }} \begin{array}{c}
\\
\hline
\end{array}]
$$

Matlab script Ytrfo.m

```
function [Ytf] = Ytrfo(rp,xp,bp,n,phi,b0,type,r0,x0,rn1,xn1,rn2,xn2)
% rp : positive-sequence series resistance (pu)
% xp : positive-sequence series reactance (pu)
% bp : positive-sequence magnetizing susceptance (pu)
% n : magnitude of transformer ratio (pu/pu)
% phi : phase angle of transformer ratio (rad)
% b0 : zero-sequence magnetizing susceptance (pu)
% type = 1 indicates that the transformer is of the type Ynd
% = 2 indicates that the transformer is of the type Ynyn
% = 3 indicates that the transformer is of another type
%
% r0 : zero-sequence series resistance (pu); not used if type=3
% x0 : zero-sequence series reactance (pu); not used if type=3
% rnl : neutral resistance on the primary side (pu); not used if type=3
% xn1 : neutral reactance on the primary side (pu); not used if type=3
% rn2 : neutral resistance on the secondary side (pu); not used if type=1 or 3
% xn2 : neutral reactance on the secondary side (pu); not used if type=1 or 3
%
\% ~ s e t ~ r n 1 ~ a n d ~ x n 1 ~ ( o r ~ r n 2 ~ a n d ~ x n 2 ) ~ t o ~ v e r y ~ l a r g e ~ v a l u e s ~ i f ~ n e u t r a l ~ i s ~ n o t ~ g r o u n d e d ~
% Ytf : 6 x 6 admittance matrix of the transformer
```


[^0]: ${ }^{2}$ and no longer with a per-phase analysis

