

ELEC0014 - Introduction to power and energy systems

The "per unit" system

Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct

October 2019

 $\frac{\text{value of a quantity in physical unit}}{\text{value of corresponding "base" in same unit}} = \text{value of quantity in per unit (pu)}$

Advantages:

• the parameters of devices with similar design have close values in per unit, whatever the power of the device, provided they are referred to that power

 \Rightarrow check of data validity is easier

 \Rightarrow default values can be substituted to unavailable parameters

- in normal operating conditions, voltages in per unit are close to one
 ⇒ better conditioning of numerical computations
- the ideal transformer present in the model of a real transformer disappears after converting the parameters in per unit.

It is known that the internal reactance of a synchronous machine lies typically in the range $[1.5 \ 2.5]$ pu (on the machine base)

• A machine with the characteristics (20 kV, 300 MVA) has a reactance of 2.667 $\Omega.$ Is this a normal value ?

We will see that the base impedance is $20^2/300 = 1.333 \Omega$ value of reactance in per unit = 2.667/1.333 = 2 pu \Rightarrow quite normal value !

• Same question for a machine with the characteristics (15 kV, 30 MVA)

The base impedance is now $15^2/30 = 7.5 \Omega$ value of reactance in per unit = 2.667/7.5 = 0.356 pu \Rightarrow abnormal small value !

Converting a simple circuit in per unit

Converting an electric circuit in per unit \implies choosing 3 base quantities

for instance: power S_B voltage V_B time t_B

The other base values are obtained using fundamental laws of Electricity:

base current:
$$I_B = \frac{S_B}{V_B}$$

base impedance: $Z_B = \frac{V_B}{I_B} = \frac{V_B^2}{S_B}$
base magnetic flux: $\psi_B = V_B t_B$
base inductance: $L_B = \frac{\psi_B}{I_B} = \frac{V_B^2 t_B}{S_B}$
base angular frequency: $\omega_B = \frac{Z_B}{L_B} = \frac{1}{t_B}$

 V_B , I_B : RMS values.

Variant (adopted in this course)

Consider an AC circuit operating at frequency f_N .

Choosing a base angular frequency instead of a base time:

$$\omega_B=\omega_N=2\pi f_N$$
 rad/s

from which one derives:

$$t_B = rac{1}{\omega_B} = rac{1}{\omega_N} = rac{1}{2\pi f_N}$$
 s

With this choice:

$$X_{pu} = \frac{X}{Z_B} = \frac{\omega_N L}{\omega_B L_B} = \frac{L}{L_B} = L_{pu}$$

At frequency f_N , the reactance and the inductance have the same per unit value!

Converting in per unit a typical sinusoidal relation

In MVA, MW and Mvar:

$$S = V I \cos(\theta - \psi) + j V I \sin(\theta - \psi)$$

In per unit:

$$S_{pu} = \frac{S}{S_B} = \frac{VI}{V_B I_B} \cos(\theta - \psi) + j \frac{VI}{V_B I_B} \sin(\theta - \psi)$$
$$= V_{pu} I_{pu} \cos(\theta - \psi) + j V_{pu} I_{pu} \sin(\theta - \psi)$$

Same equation in physical units and in per unit !

In the above steady-state equation, time does not appear explicitly. Hence, only S_B and V_B are used.

Converting in per unit a typical dynamic equation

In volts:

$$v = R i + L \frac{d i}{d t}$$

In per unit:

$$v_{pu} = \frac{v}{V_B} = \frac{R\,i}{Z_B\,I_B} + \frac{L}{\omega_B\,L_B\,I_B}\frac{d\,i}{d\,t} = R_{pu}i_{pu} + L_{pu}\frac{1}{\omega_B}\frac{d\,i_{pu}}{d\,t} = R_{pu}i_{pu} + L_{pu}\frac{d\,i_{pu}}{d\,t_{pu}}$$

In the above equation, time appears explicitly. There are two options:

- all variables, including time, are converted in per unit
 - \longrightarrow identical equations in physical units and in per unit
- time is kept in seconds
 - \rightarrow there appears a factor $1/\omega_B$ in front of the derivation operator.

Converting in per unit two magnetically coupled circuits

Flux-current relations:

$$\psi_1 = L_{11}i_1 + L_{12}i_2$$

$$\psi_2 = L_{21}i_1 + L_{22}i_2$$

Identical times. For reasons of simplicity we take: $t_{1B} = t_{2B}$

Symmetry of inductance matrices. In Henry, one has: $L_{12} = L_{21}$. We want that this property still holds true in per unit.

$$\psi_{1pu} = \frac{\psi_1}{\psi_{1B}} = \frac{L_{11}}{L_{1B}} \frac{i_1}{l_{1B}} + \frac{L_{12}}{L_{1B}} \frac{i_2}{l_{1B}} = L_{11pu} i_{1pu} + \underbrace{\frac{L_{12} l_{2B}}{L_{1B} l_{1B}}}_{= L_{12pu}} i_{2pu}$$

Similarly for the second circuit:

$$L_{21pu} = \frac{L_{21}I_{1B}}{L_{2B}I_{2B}}$$

$$L_{12pu} = L_{21pu} \quad \Leftrightarrow \quad \frac{I_{2B}}{L_{1B}I_{1B}} = \frac{I_{1B}}{L_{2B}I_{2B}} \quad \Leftrightarrow \quad S_{1B} t_{1B} = S_{2B} t_{2B} \quad \Leftrightarrow \quad S_{1B} = S_{2B}$$

A per unit system preserving symmetry of inductance matrices is called *reciprocal*.

Summary

circuit $\# 1$	circuit # 2	
S_B	S _B	\leftarrow one degree of freedom
t_B	t _B	$ =1/\omega_N$
V_{1B}	V_{2B}	\leftarrow one degree of freedom in each circuit

Application to a network including several voltage levels connected through transformers:

- the same base power S_B is taken at all voltage levels. Usual value in transmission systems: 100 MVA
- the same base time t_B is taken everywhere (not used in steady state)
- at each voltage level, the base voltage is chosen in relation with the nominal voltage of the equipment.

Converting in per unit a three-phase circuit

- Same base time t_B and same base power S_B everywhere
- at each voltage level, a base V_B is chosen for all phase-to-neutral voltages.

1st case. Unbalanced operation - analysis of the three phases

Convenient choice: $S_B = \text{single-phase}$ power

$$ightarrow$$
 base current: $I_B = \frac{S_B}{V_B}$
ightarrow base impedance: $Z_B = \frac{V_B}{I_B} = \frac{V_B^2}{S_B}$ etc.

Example. Convert in per unit the expression of the three-phase complex power:

$$S = \bar{V}_{a} \bar{I}_{a}^{\star} + \bar{V}_{b} \bar{I}_{b}^{\star} + \bar{V}_{c} \bar{I}_{c}^{\star}$$
$$S_{pu} = \frac{S}{S_{B}} = \frac{\bar{V}_{a}}{V_{B}} \frac{\bar{I}_{a}^{\star}}{I_{B}} + \frac{\bar{V}_{b}}{V_{B}} \frac{\bar{I}_{b}^{\star}}{I_{B}} + \frac{\bar{V}_{c}}{V_{B}} \frac{\bar{I}_{c}^{\star}}{I_{B}} = \bar{V}_{a \, pu} \bar{I}_{a \, pu}^{\star} + \bar{V}_{b \, pu} \bar{I}_{b \, pu}^{\star} + \bar{V}_{c \, pu} \bar{I}_{c \, pu}^{\star}$$

Identical expressions in physical units and in per unit !

2nd case. Balanced operation - per phase analysis

Convenient choice: $S_B =$ three-phase power

Example. Convert in per unit the expression of the three-phase complex power:

$$S = \bar{V}_{a} \bar{I}_{a}^{\star} + \bar{V}_{b} \bar{I}_{b}^{\star} + \bar{V}_{c} \bar{I}_{c}^{\star} = 3 \bar{V}_{a} \bar{I}_{a}^{\star}$$
$$S_{pu} = \frac{S}{S_{B}} = \frac{3 \bar{V}_{a} \bar{I}_{a}^{\star}}{3 V_{B} I_{B}} = \bar{V}_{a pu} \bar{I}_{a pu}^{\star}$$

- All calculations are performed in a single phase, and in per unit
- **②** at the end, the power in all three phases is obtained by multiplying the power in per unit by S_B .

Change of base

In a three-phase circuit, an impedance Z (in ohm) becomes in per unit

in the first base:
$$Z_{pu1} = \frac{Z}{Z_{B1}} = \frac{Z S_{B1}}{3V_{B1}^2}$$

in the second base: $Z_{pu2} = \frac{Z}{Z_{B2}} = \frac{Z S_{B2}}{3V_{B2}^2}$

Hence the formula to change from the first to the second base is:

$$Z_{pu2} = Z_{pu1} \frac{S_{B2}}{S_{B1}} \left(\frac{V_{B1}}{V_{B2}}\right)^2$$