

ELEC0014 - Introduction to power and energy systems

Variation of loads with voltage and frequency

Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct

October 2019

Objective

Represent the variation of load power with voltage and frequency

- simple model
- first, considered for individual loads
- next, for groups of loads
- model frequently used in the study of large systems.

Dynamic vs. static load models

General dynamic model of load

$$P = H_P(V, f, \mathbf{x})$$
(1)

$$Q = H_Q(V, f, \mathbf{x})$$
(2)

$$\dot{\mathbf{x}} = \mathbf{g}(V, f, \mathbf{x})$$

P: active power consumedQ: reactive power consumedV: magnitude of terminal voltagef: frequency of that voltage \mathbf{x} : state vector characterizing the internal dynamics

Corresponding static model

Motivation: dynamics very fast, not of interest, or badly known (lack of data)

$$\dot{\mathbf{x}} = \mathbf{0} \quad \Rightarrow \quad \mathbf{g}(V, f, \mathbf{x}) = \mathbf{0}$$
 (3)

Obtaining $\mathbf{x}(V, f)$ from (3) and replacing into (1) and (2):

$$P = h_P(V, f) \qquad \qquad Q = h_Q(V, f)$$

Exponential model

(en français: modèle à exposant(s))

$$P = P_o \left(\frac{V}{V_o}\right)^{\alpha} \qquad Q = Q_o \left(\frac{V}{V_o}\right)^{\beta} \tag{4}$$

 V_o : reference voltage

 P_o (resp. Q_o) : active (resp. reactive) power consumed under that voltage

 α,β : characterize the type of load

 P_o, Q_o : characterize the amount of load (or connected equipment)

Power factor $\cos \phi$

$$\tan \phi = \frac{Q}{P} = \frac{Q_o}{P_o} \left(\frac{V}{V_o} \right)^{\beta - \alpha}$$

if $\alpha \neq \beta$ (which is very often the case in practice) the power factor varies with V

Particular cases

• $\alpha = \beta = 2$: constant admittance load

$$P = \underbrace{\frac{P_o}{V_o^2}}_{G_o} V^2 \qquad Q = \underbrace{\frac{Q_o}{V_o^2}}_{-B_o} V^2$$

• $\alpha = \beta = 1$: constant "current"

$$P = \underbrace{\frac{P_o}{V_o}}_{I_{Po}} V \qquad Q = \underbrace{\frac{Q_o}{V_o}}_{I_{Qo}} V$$

Shortcut for "constant active and reactive currents" ! Do not confuse with an independent current source !

• $\alpha = \beta = 0$: constant power load

$$P = P_o$$
 $Q = Q_o$

Choice of reference voltage V_o

Active power consumed at a voltage V_1 :

$$P_1 = P_o \left(\frac{V_1}{V_o} \right)^{\alpha} \quad \Rightarrow \quad P_o = P_1 \left(\frac{V_o}{V_1} \right)^{\alpha}$$

By replacing P_o into (4):

$$P = P_1 \left(\frac{V_o}{V_1}\right)^{\alpha} \left(\frac{V}{V_o}\right)^{\alpha} = P_1 \left(\frac{V}{V_1}\right)^{\alpha}$$

Similarly for reactive power:

$$Q = Q_1 \left(rac{V}{V_1}
ight)^eta$$

The reference voltage can be set to any value V_1 , without changing the load characteristics, provided that the multiplicative constants P_1 and Q_1 are set to the powers consumed under that voltage.

Interpretation of the α and β exponents

Consider a variation ΔV of the voltage, small enough to linearize (4) into:

$$\Delta P \simeq \alpha P_o \frac{V^{\alpha-1}}{V_o^{\alpha}} \Delta V$$

Assume that the variation is around $V = V_o$:

$$\frac{\Delta P}{P_o} = \alpha \frac{\Delta V}{V_o} \quad \Leftrightarrow \quad \alpha = \frac{\Delta P / P_o}{\Delta V / V_o}$$

Similarly for reactive power:

$$\frac{\Delta Q}{Q_o} = \beta \frac{\Delta V}{V_o} \quad \Leftrightarrow \quad \beta = \frac{\Delta Q / Q_o}{\Delta V / V_o}$$

 α (resp. β) is the "normalized" or "relative" sensitivity of active (resp. reactive) power to voltage. Dimensionless.

Accounting for sensitivity to frequency f

The frequency variations being small in practice, a linear correction is sufficient:

$$P = P_o \left(1 + D_p \frac{f - f_N}{f_N} \right) \left(\frac{V}{V_o} \right)^{\alpha}$$
$$Q = Q_o \left(1 + D_q \frac{f - f_N}{f_N} \right) \left(\frac{V}{V_o} \right)^{\beta}$$

 f_N : nominal frequency of network

The D_p and D_q coefficients are easily interpreted:

$$D_{p} = \frac{\Delta P / P_{o}}{\Delta f / f_{N}} \bigg|_{V=V_{o}} \quad \text{et} \quad D_{q} = \frac{\Delta Q / Q_{o}}{\Delta f / f_{N}} \bigg|_{V=V_{o}}$$

Examples of load model parameters

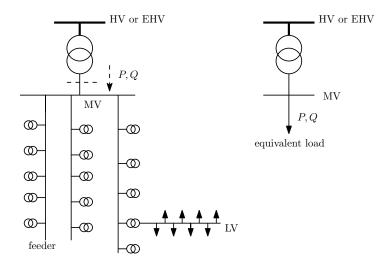
component	$\cos\phi$	α	β	Dp	D_q
water heaters, range top, oven, deep fryer	1.00	2.0	0	0	0
dishwasher	0.99	1.8	3.6	0	-1.4
clothes washer	0.65	0.08	1.6	3.0	1.8
clothes dryer	0.99	2.0	3.2	0	-2.5
refrigerator	0.8	0.77	2.5	0.53	-1.5
television	0.8	2.00	5.1	0	-4.5
incandescent lights	1.0	1.55	0	0	0
fluorescent lights	0.9	0.96	7.4	1	-2.8
industrial motors	0.88	0.07	0.5	2.5	1.2
fan motors	0.87	0.08	1.6	2.9	1.7
agricultural pumps	0.85	1.4	1.4	5.0	4.0
arc furnace	0.70	2.3	1.6	-1.0	-1.0
unloaded transformer	0.64	3.4	11.5	0	-11.8
3-phase central air conditioning	0.90	0.09	2.5	0.98	-1.3
1-phase central air conditioning	0.96	0.20	2.3	0.90	-2.7
window-type air conditioning	0.82	0.47	2.5	0.56	-2.8

Typical values of $\cos \phi$ allow guessing a reactive power when only the active power of the load is known.

Model of the whole load of a distribution system

The whole load seen from the entry point of a MV distribution network is a rather complex aggregate

- including numerous loads of different natures
- as well as the losses in the distribution network itself
- load composition is not well known in practice...
- ... and changes with the time of the day, the day of the week, the season, etc.
- even if its composition was well known, there is a need to represent the aggregate with a simple enough model.



Thanks to its simplicity, the above individual model is frequently used to characterize the power consumed by a set of loads of similar nature

load class	$\cos\phi$	α	β	D_p	D_q				
residential, in summer	0.9	1.2	2.9	0.8	-2.2				
residential, in winter	0.99	1.5	3.2	1.0	-1.5				
commercial, in summer	0.85	1.0	3.5	1.2	-1.6				
commercial, in winter	0.9	1.3	3.1	1.5	-1.1				
industrial	0.85	0.2	6.0	2.6	1.6				
power plant auxiliaries	0.8	0.1	1.6	2.9	1.8				

Examples of parameters by load classes

To account for loads of different natures, their respective exponential models can be combined with proportions a_i and b_i :

$$P = P_{o}\left(1 + D_{p}\frac{f - f_{N}}{f_{N}}\right) \frac{\sum_{i=1}^{c} a_{i} V^{\alpha_{i}}}{\sum_{i=1}^{c} a_{i} V_{o}^{\alpha_{i}}} \quad \text{avec} \quad \sum_{i=1}^{c} a_{i} = 1 \quad (5)$$
$$Q = Q_{o}\left(1 + D_{q}\frac{f - f_{N}}{f_{N}}\right) \frac{\sum_{i=1}^{c} b_{i} V^{\beta_{i}}}{\sum_{i=1}^{c} b_{i} V_{o}^{\beta_{i}}} \quad \text{avec} \quad \sum_{i=1}^{c} b_{i} = 1 \quad (6)$$

(same sensitivity to frequency considered for all components of load).

Exponential model valid in a certain interval of voltage around the nominal value.

May not accurately apply to large and/or sustained voltage drops, e.g. those created by short-circuits.

Some phenomena responsible for this:

- stalling of induction motors
- disconnection of electronic converters under low voltage conditions
- extinction of fluorescent lights for V < 0.7 pu
- etc.