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The synchronous machine Modelling of machine with magnetically coupled circuits

Modelling of machine with magnetically coupled circuits

Simplifying assumptions

round rotor
saturation of magnetic material neglected
on the rotor: field winding only (acceptable since focus is on steady-state
operation)
single pair of poles (does not affect the electrical behaviour)
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The synchronous machine Modelling of machine with magnetically coupled circuits

Relations between voltages, fluxes and currents

Stator :

va = −Raia −
dψa

dt
vb = −Raib −

dψb

dt
vc = −Raic −

dψc

dt

Ra : resistance of each phase ψa, ψb and ψc : flux linkages in phases

Field winding :

vf = Rf if +
dψf

dt
Rf : resistance of winding ψf : flux linkage in winding
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The synchronous machine Modelling of machine with magnetically coupled circuits

Inductance matrix


ψa

ψb

ψc

ψf

=


Lo −Lm −Lm Laf cos θr

−Lm Lo −Lm Laf cos(θr − 2π
3 )

−Lm −Lm Lo Laf cos(θr − 4π
3 )

Laf cos θr Laf cos(θr − 2π
3 ) Laf cos(θr − 4π

3 ) Lff


︸ ︷︷ ︸

L(θr )


ia

ib

ic

if



where Lo , Lm > 0.

Self-inductance of any stator winding is constant (due to round rotor)

mutual inductance between any two phases is constant (due to round rotor)

. . . and negative since a positive current ix in phase x creates a negative flux
ψy in phase y (x 6= y)

self-inductance of field winding is constant (path of magnetic field identical
whatever the position of the rotor)

mutual inductance between one phase and the field winding is maximum and
positive when θr = 0, zero when θr = π

2 , minimum and negative when θr = π.
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The synchronous machine Machine in steady-state operation

Machine in steady-state operation

rotation speed equal to nominal angular frequency :

θ̇r = ωN θr = θo
r + ωNt

θo
r : rotor positon at t = 0

constant direct current in field winding : if = If

balanced three-phase voltages and currents in stator :

va(t) =
√

2V cos(ωNt + θ) ia(t) =
√

2I cos(ωNt + ψ)

vb(t) =
√

2V cos(ωNt + θ − 2π
3 ) ib(t) =

√
2I cos(ωNt + ψ − 2π

3 )

vc (t) =
√

2V cos(ωNt + θ − 4π
3 ) ic (t) =

√
2I cos(ωNt + ψ − 4π

3 )

with the corresponding phasors :

V̄ = V e jθ

Ī = I e jψ
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The synchronous machine Machine in steady-state operation

Flux linkage in one stator winding (phase a)

ψa = Lo

√
2I cos(ωNt + ψ)− Lm

√
2I cos(ωNt + ψ − 2π

3
)

−Lm

√
2I cos(ωNt + ψ − 4π

3
) + Laf cos(ωNt + θo

r ) If

Adding and subtracting Lm

√
2I cos(ωNt + ψ) yields :

ψa = Lo

√
2I cos(ωNt + ψ) + Lm

√
2I cos(ωNt + ψ)

−Lm

√
2I

(
cos(ωNt + ψ) + cos(ωNt + ψ − 2π

3
) + cos(ωNt + ψ − 4π

3
)

)
︸ ︷︷ ︸

=0

+Laf If cos(ωNt + θo
r )

=
√

2(Lo + Lm)I cos(ωNt + ψ)︸ ︷︷ ︸
ψs

a

+ Laf If cos(ωNt + θo
r )︸ ︷︷ ︸

ψr
a

(1)

ψs
a : flux of the rotating field produced by the three stator currents

ψr
a : flux of the field created by the current if
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The synchronous machine Machine in steady-state operation

Both flux components being sinusoidal functions of time (with angular frequency
ωN ), they can be characterized by phasors :

ψ̄s
a = (Lo + Lm) I e jψ ψ̄r

a =
Laf√

2
If e jθo

r

Phasor diagram :

Īa

ψ̄s
a

ψ̄r
a

d

qθor

ψ

Horizontal axis

= axis on which rotating vectors are projected

= axis to which the rotor position is referred, i.e. axis of phase a
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The synchronous machine Machine in steady-state operation

Flux linkage in field winding

ψf = Lff If + Laf cos(ωNt + θo
r )
√

2I cos(ωNt + ψ)

+ Laf cos(ωNt + θo
r −

2π

3
)
√

2I cos(ωNt + ψ − 2π

3
)

+ Laf cos(ωNt + θo
r −

4π

3
)
√

2I cos(ωNt + ψ − 4π

3
)

= Lff If +

√
2Laf

2
I [cos(θo

r − ψ) + cos(2ωNt + θo
r + ψ)]

+

√
2Laf

2
I

[
cos(θo

r − ψ) + cos(2ωNt + θo
r + ψ − 4π

3
)

]
+

√
2Laf

2
I

[
cos(θo

r − ψ) + cos(2ωNt + θo
r + ψ +

4π

3
)

]
= Lff If︸︷︷︸

ψr
f

+
3
√

2Laf

2
I cos(θo

r − ψ)︸ ︷︷ ︸
ψs

f

ψs
f : flux of the rotating field produced by the three stator currents; constant

magnitude; at an angle θo
r − ψ wrt to field winding

ψr
f : flux created by field current
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The synchronous machine Machine in steady-state operation

Voltage-current relation at stator

Replacing va, ia and ψa by their expressions :

√
2V cos(ωNt + θ) = −Ra

√
2I cos(ωNt + ψ) +

√
2ωN (Lo + Lm)I sin(ωNt + ψ)

+
√

2
ωNLaf√

2
If sin(ωNt + θo

r )

Let us define :

X = ωN (Lo + Lm) : the synchronous reactance of the machine1

Eq = ωN Laf√
2
If : RMS value of an e.m.f. proportional to field current If

The above equation becomes:

√
2V cos(ωNt + θ) = −Ra

√
2I cos(ωNt + ψ) +

√
2XI cos(ωNt + ψ − π

2
)

+
√

2Eq cos(ωNt + θo
r −

π

2
)

1Ra + jX is the cyclic impedance defined in a previous lecture
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The synchronous machine Machine in steady-state operation

The corresponding phasor equation is:

Ve jθ = −RaI e
jψ + XI e jψe−j π

2 + Eq e j(θo
r −π

2 )

or simply:
V̄ = −Ra Ī − jX Ī + Ēq

where Ēq = Eqe
j(θo

r −π
2 ) is the phasor of the e.m.f. Eq, lying on the q axis2

θor jXĪ

q

d

Ī

RaĪ

Ēq

V̄

ψ

δ

θ

2hence the notation Eq
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The synchronous machine Machine in steady-state operation

Per-phase equivalent circuit

The synchronous reactance X characterizes the steady-state operation of the
machine.

δ is the phase shift between the internal e.m.f. Ēq and the terminal voltage V̄ .

δ is called the internal angle or load angle of the machine.
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The synchronous machine Nominal values and orders of magnitude

Nominal values and orders of magnitude

Nominal voltage UN : voltage for which the machine has been designed (in
particular its insulation).
The real voltage may deviate from this value by a few %

nominal current IN : current for which machine has been designed (in
particular the cross-section of its conductors).
Maximum current that can be accepted without limit in time

nominal apparent power:
SN =

√
3UN IN

Machine parameters in per unit on the base (SB = SN ,VB = UN/
√

3) :

Ra ' 0.005 pu

X ' 1.5− 2.5 pu (for a round-rotor machine as considered in this lecture)
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The synchronous machine Powers in synchronous machine : general case

Powers in synchronous machine : general case

Power balance of the stator

pr→s = pT + pJs +
dWms

dt

pr→s : power transfer from rotor to stator

pT : three-phase instantaneous power leaving the stator

pJs : Joule losses in stator windings

Wms : magnetic energy stored in the stator windings

Nature of pr→s ?

mechanical power for sure (torque applied to rotating masses)

is there some electromagnetic transfer of power (like in a transformer) ?
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The synchronous machine Powers in synchronous machine : general case

Power balance of the rotor

pf + Pm = pJf +
dWmf

dt
+

dWc

dt
+ pr→s

Pm : mechanical power provided by the turbine
pf : electrical power provided to the field winding by the excitation system
pJf : Joule losses in the field winding
Wmf : magnetic energy stored in the field winding
Wc : kinetic energy of all rotating masses (generator and turbine)

Total electromagnetic energy stored in the machine :

Wm tot =
1

2

[
ia ib ic if

]
L(θr )


ia
ib
ic
if

 =
1

2

[
ia ib ic if

] 
ψa

ψb

ψc

ψf


=

1

2
(iaψa + ibψb + icψc )︸ ︷︷ ︸

Wms

+
1

2
if ψf︸ ︷︷ ︸

Wmf
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The synchronous machine Powers in synchronous machine : general case

Motion equation

I d2θr

dt2
= Tm − Te

I : moment of inertia of all rotating masses

Tm : mechanical torque applied to the rotor by the turbine

Te : electromagnetic torque applied to the rotor by the generator.

Multiplying by the rotor speed dθr/dt :

I dθr

dt

d2θr

dt2
=

dθr

dt
Tm −

dθr

dt
Te

⇔ dWc

dt
= Pm −

dθr

dt
Te

and the power balance of the rotor becomes :

pf +
dθr

dt
Te = pJf +

dWmf

dt
+ pr→s
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The synchronous machine Powers in synchronous machine : steady-state operation

Powers in synchronous machine : steady-state operation

Power balance of stator

1

2
iaψa = (Lo + Lm)I 2 cos2(ωNt + ψ) +

√
2

2
Laf If I cos(ωNt + θo

r ) cos(ωNt + ψ)

=
1

2
(Lo + Lm)I 2 +

1

2
(Lo + Lm)I 2 cos(2ωNt + 2ψ) +

√
2

4
Laf If I [ cos(θo

r − ψ) + cos(2ωNt + θo
r + ψ) ]

By doing the same derivation for phases b and c , and adding all three results :

Wms =
1

2
(iaψa + ibψb + icψc ) =

3

2
(Lo + Lm)I 2 +

3
√

2

4
Laf If I cos(θo

r − ψ)

Wms is constant, i.e.
dWms

dt
= 0.
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The synchronous machine Powers in synchronous machine : steady-state operation

In three-phase balanced operation :

pT = 3P

where P is the active power produced by one phase.

Hence, the power balance of the stator simply becomes :

pr→s = 3 P + pJs
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The synchronous machine Powers in synchronous machine : steady-state operation

Power balance of rotor

Wmf =
1

2
if ψf =

1

2
Lff I

2
f +

3
√

2

4
Laf I If cos(θo

r − ψ)

Wmf is constant, i.e.
dWmf

dt
= 0.

dψf

dt
= 0 ⇒ Vf = Rf If ⇒ pf = Rf I

2
f = pJf

In steady state, the power entering the field winding is dissipated in Joule losses !

The field current aims at “magnetizing” the rotor, allowing the torque Te to be
created, but the field winding does not exchange power with the other windings.

dθr

dt
= ωN

dWc

dt
= 0 Tm = Te Pm = ωNTe = ωNTm

Hence, the power balance of the rotor simply becomes :

pr→s = ωNTe = ωNTm = Pm

The power pr→s transfered from rotor to stator is purely mechanical !
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The synchronous machine Powers in synchronous machine : steady-state operation

Expression of active and reactive powers

We assume Ra ' 0.

Active and reactive powers produced by the machine, in per unit :

P = −VEq

X
sin (θ − (θ + δ)) =

VEq

X
sin δ

Q = −V 2

X
+

VEq

X
cos (θ − (θ + δ)) = −V 2

X
+

VEq

X
cos δ
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The synchronous machine Capability curves

Capability curves

Seen from the network, a generator is characterized by three variables: V , P et Q

Limits on P, Q et V corresponding to generator operation within limits ?

The capability curves define the set of admissible operating points in the (P,Q)
space, under constant voltage V (justified by automatic voltage regulator)
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The synchronous machine Capability curves

Stator (heating) limit

stator current I = IN in per unit: (S2 = ) P2 + Q2 = V 2 I 2
N

Rotor (heating) limit

field current If = Ifmax ⇒ Eq = Eqmax =
ωNLaf√

2
Ifmax

With the same simplifying assumptions as before, and with Ra = 0 :

P =
EqmaxV

X
sin δ Q =

EqmaxV

X
cos δ − V 2

X

after eliminating δ: (
VEqmax

X

)2

=

(
Q +

V 2

X

)2

+ P2
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The synchronous machine Capability curves

Lower limit on active power caused by stability of combustion in thermal
power plants

maximum reactive power increases when the active power decreases

to relieve an overloaded machine, P can be decreased but this power has to be
produced by some other generators !

for a given value of P, the maximum reactive power increases with V

this holds true under the simplifying assumption of a non saturated machine;
see next slide for a case with saturation

in practice, under V = 1 pu, the two-by-two intersection points of
respectively the turbine, the rotor and the stator limits are close to each
other (“coherent” design of stator and rotor)

the stator limits can be increased by a stronger cooling (e.g. higher hydrogen
pressure in stator windings).

Under-excitation limit

Corresponds to a stability, not a thermal limit: absorbing more Q ⇒ decreasing Eq

⇒ decreasing if → maximum torque Te decreases ⇒ risk of losing synchronism.
See Chapter on voltage regulation.

22 / 23



The synchronous machine Capability curves

Capability curves (Q > 0 part only) of a real machine
with saturation taken into account

the overall shape of the curves is the same

but the rotor limit becomes more constraining when V increases.
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