Here is a snapshot of the RMS voltages, RMS currents, three-phase active, reactive and apparent powers measured in several MV/LV sub-stations of the Sart Tilman campus :

| B28 : Montefiore  | 15437V | 15436V | 15428V | 19.8A   | 20.39A  | 19.48A  | 0kW           | 0kW  | 0kW           | 507 <b>k</b> W | 152kVAr   | 529kVA   | 16530158kWh | 0kWh  | 3158035kVAr  | 2kVAr      | 03/10/2017<br>11:37:00 |
|-------------------|--------|--------|--------|---------|---------|---------|---------------|------|---------------|----------------|-----------|----------|-------------|-------|--------------|------------|------------------------|
| B30 : Cyclotron   | 235V   | 236V   | 236V   | 118.68A | 114.17A | 100.69A | 25kW          | 24kW | 20kW          | 3.38kW         | 35.58kVAr | 77.55kVA | 2035001kWh  | 0kWh  | 905384kVAr   | 0kVAr      | 03/10/2017<br>11:37:00 |
| B31 : Droit       | 15454V | 15447V | 15442V | 12A     | 11A     | 11A     | 0kW           | 0kW  | 0kW           | 281kW          | 116kVAr   | 304kVA   | 1910050kWh  | 0kWh  | 322539kVAr   | 248389kVAr | 03/10/2017<br>11:37:00 |
| B34 : GIGA        | 15317V | 15324V | 15295V | 4A      | 4A      | 4A      | 36kW          | 39kW | 38kW          | 113kW          | 20kVAr    | 115kVA   | 3279821kWh  | 0kWh  | 628493kVAr   | 10kVAr     | 03/10/2017<br>11:37:00 |
| B36 : Pharmacie   | 15424V | 15414V | 15367V | 40.7A   | 37.85A  | 39.05A  | 0kW           | 0kW  | 0kW           | 978kW          | 360kVAr   | 1042kVA  | 30098454kWh | 81kWh | 12633902kVAr | 29kVAr     | 03/10/2017<br>11:37:00 |
| B41 : FMV06       | 15394V | 15381V | 15335V | 17A     | 15A     | 17A     | 0kW           | 0kW  | 0kW           | 356kW          | 233kVAr   | 426kVA   | 5829855kWh  | 0kWh  | 4002455kVAr  | 0kVAr      | 03/10/2017<br>11:37:00 |
| B42 : FMV08       | 15281V | 15289V | 15243V | 9A      | 10A     | 10A     | 70 <b>k</b> W | 76kW | 75 <b>k</b> W | 220kW          | 122kVAr   | 252kVA   | 5400510kWh  | 0kWh  | 2531453kVAr  | 0kVAr      | 03/10/2017<br>11:37:00 |
| B52 : Genie Civil | 15381V | 15434V | 15459V | 18.98A  | 18.71A  | 18.83A  | 0kW           | 0kW  | 0kW           | 446kW          | 233kVAr   | 503kVA   | 10807323kWh | 0kWh  | 5263374kVAr  | 0kVAr      | 03/10/2017<br>11:37:00 |
|                   |        |        |        |         |         |         |               |      |               |                |           |          |             |       |              |            |                        |

• neglecting the (small) imbalance of voltages and currents, check the values of the RMS currents in the B28 sub-station;

• compare the power factors measured in the B28 and B52 sub-stations, respectively.

Consider the High Voltage Direct Current (HVDC) link shown in the figure below.



- AC voltage at rectifier end : 400 kV AC voltage at inverter end : 380 kV
- voltage  $V_{dr}$  at rectifier end of DC cable : 270 kV (between + pole and ground)
- active power entering the rectifier : 1000 MW
- reactive power consumed by the rectifier : 650 Mvar
- reactive power consumed by the inverter : 600 Mvar <sup>1</sup>
- rectifier and inverter assumed lossless.

Determine the AC current in each phase of the rectifier and of the inverter.

Draw the phasor diagrams of  $(\bar{V}_a, \bar{I}_a)$  and  $(\bar{V}'_a, \bar{I}'_a)$ , respectively.

 $<sup>^1\</sup>mbox{HVDC}$  link with "Line Commutated Converters" : consumes reactive power at both ends

A single-phase resistive load is connected between phases a and b of a three-phase network, as shown in the left figure below. It is thus creating an imbalance.

Consider the same load "compensated" as shown in the right figure below.

- Show that, if the network voltages are balanced, so are the line currents<sup>2</sup>.
- What is the per-phase equivalent of the compensated load ?
- What is the three-phase reactive power consumed by the compensated load ?



Using the above result, determine how to compensate a double-phase load made up of two identical resistors, one between phases a and b, and one between phases b and c. *Hint: use superposition.* 

<sup>&</sup>lt;sup>2</sup>In other words, the load together with its compensator appear balanced if the supply voltages are balanced.

This exercise is to show the advantage of connecting in delta the loads that produce some current harmonics. The latter are undesirable because they create additional losses, vibrations in rotating machines, etc.

Consider a delta-connected three-phase load, with each branch carrying a current i(t):

- ullet periodic, with period T
- odd: i(-t) = -i(t)
- exhibiting inside each half period, a symmetry characterized by :  $i(\frac{T}{2} t) = i(t)$



Show that the currents in the line that feeds this load do not include even harmonics, nor any harmonic with frequency smaller than 5f where  $f = \frac{1}{T}$  is the frequency of the fundamental component.