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• Show the overall structure of an electric power system

• Highlight a few important features of power system operation

• Illustrate those on the Belgian and European systems

• Present some orders of magnitude it is important to have in mind

• Introduce some terminology

Revisit the slides at the end of the course, 

in the light of what you will have learnt !

Objectives
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• In modern society, electricity has become a “commodity”

definition : “marketable good or service whose instances are treated by the market as 
equivalent with no regard to who produced them”

• “behind the power outlet” there is a complex industrial process

• electric energy systems are the largest systems ever built by man

• thousands of km of overhead lines and underground cables, of transformers

• tens/hundreds of power plants + a myriad of distributed energy sources

• devices to (dis)connect elements: substations, circuit breakers, isolators

• protection systems: to eliminate faults

• real-time measurements : active and reactive power flows, voltage magnitudes, 
current magnitudes, energy counters, phasor measurement units

• controllers: distributed (e.g. in power plant) or centralized (control center) 

• etc.

• unlike most other complex systems built by man, power systems are exposed 
to external “aggressions” (rain, wind, ice, storm, lightning, etc.)

A large-scale system
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• In spite of those disturbances, modern electric power systems are very reliable

• Example : assume a duration of power supply interruption   0.5 hour / year

availability = 
8760 − 0.5

8760
= 99.994 %   !

• however, the cost of unserved energy is high

• average cost used by CREG (Belgian regulator) to estimate the impact of forced load 
curtailment :    8 300 €/MWh      (source: Bureau fédéral du plan)

• varies with time of the day : between 6 000 and 9 000 €/MWh

• varies with type of consumer : 2 300 €/MWh for domestic, much higher for industrial

• even higher average cost considered elsewhere (e.g. 26 000 €/MWh in France !)

• large-scale failures (blackouts) have tremendous societal consequences

• next two slides: examples of blackouts and their impacts

Low-probability but high-cost failures
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• 50 million people disconnected initially

• 61 800 MW of load cut in USA & Canada

• cost in USA : 4 to 10 billion US $

• in Canada : 18.9 million working hours lost

• 265 power plants shut down

• restoration : from a few hours to 4 days

USA-Canada blackout, August 2003

source : 

North American Electric Reliability Council (NERC)



6

Italian blackout, September 2003

• cascade tripping of interconnection lines  separation of Italy from rest of UCTE system

• deficit of 6 660 MW imported in Italian system, causing frequency to collapse in Italy

• 340 power plants shut down

• 55 million people disconnected initially - 27 000 MW lost  (blackout occurred during night)

• estimated cost of disruption   139 million US $ 

• restoration time : up to 15 hours

source: 

Union for the Co-ordination of 
Transmission of Electricity 

(UCTE)

which is now part of ENTSOe
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• End of 19th century : Gramme, Edison devised the first generators, which 
produced Direct Current (DC) under relatively low voltages

• impossibility to transmit large powers with direct current:

• 𝑝𝑜𝑤𝑒𝑟 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 × 𝑣𝑜𝑙𝑡𝑎𝑔𝑒

if voltage cannot be increased, the current must be

but        𝑝𝑜𝑤𝑒𝑟 𝑙𝑜𝑠𝑡 = 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 × 𝑐𝑢𝑟𝑟𝑒𝑛𝑡2  big waste of energy

and      large sections of conductors required                expensive and heavy

• impossible to interrupt a large DC current (no zero crossing), f.i. after a short-circuit

• changing for Alternating Current (AC)

• voltage increased and lowered thanks to the transformer

• standardized values of frequency : 50 and 60 Hz (other values used at a few places)

• larger nominal voltages have been used progressively

• up to 400 kV in Western Europe

• up to 765 kV in North America

• experimental lines at 1100 kV or 1200 kV (Kazakhstan, Japan, etc.)

Network : from early DC to present high-voltage AC
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Structure of electric network  (case of Belgium)

10-25 kV

transmission
meshed structure

interconnection with 
another country

large industrial 
customer

distribution
radial structure

residential customers
tertiary sector 

small industrial 
customer 

very high voltage
400 & 225 kV

high voltage
150 & 70 kV

medium 
voltage

1 – 36 kV

low voltage
0.4 – 1 kV

dispersed 
generation

10-25 kV

10-25 kV

(sub-transmission)
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Note. In Belgium there are 30 and 36 kV 
underground cable networks, in Brussels 

and Antwerp areas. These are not
distribution networks because they are 

meshed and play the role of sub-
transmission…

“large” power  plant

“large” power  plant
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400 (and 220 kV) grid in Belgium and interconnections
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Length of network by voltage level and type in Belgium

Nominal voltage
(kV)

Underground cables
(km)

Overhead lines
(km)

Total
(km)

Transmission and sub-transmission

400 49 919 968

225 47 301 348

150 573 1 981 2 554

70 301 2 404 2 705

30 & 36 2 022 60 2 082

Total 2 990 5 665 8 657

Distribution  (1)

1  < 30 71 804 5 069 76 873

< 1   (2) 80 480 47 360 127 840

Total 152 284 52 429 204 713

source : SYNERGRID as of December 2018

Very High Voltage

High Voltage

Medium Voltage

Low Voltage

(2) does not include public lighting

(1) 552 connection points between T & D
Total number of transformers : 74 990
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Electrical energy balance over the year 2018 in Belgium

source : SYNERGRID

Transmission

Distribution

import export

1 TWh

= 103 GWh

= 106 MWh

= 109 kWh

generation losses

generation

loads

auto-
production

losses

All values in TWh

21.8 4.3

1.3

2.3

pumped storage

48.8

1.4
28.3

10.6

17.7

47.1

8.0

loads

auto-
production

51.6

2.2

53.8

Total consumption = 28.3 + 1.3 + 2.3 + 53.8 = 85.7  TWh

Yearly average consumption of a family (4 persons)  3500 – 4000 kWh
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Network losses

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 & 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠𝑒𝑠

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 + 𝑖𝑚𝑝𝑜𝑟𝑡
=

1.3 + 2.3

48.8 + 21.8 + 8.0
= 4.6 %

Belgium

370

Transporting and distributing electrical energy is 
an industrial process with a relatively high efficiency
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Consumption

2014 2015

12500 MW

6000 MW |

min load of the day

max load of the day

source: ELIA

12600 MW

7000 MW

monotonic diagram
relative to one month 
(similarly for one year)

x

y

31x24=744 hours

during x hours the load power 
has been greater than y MW
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12600 MW

7100 MW

source: ELIA

evolution of load in January 2015
w-e w-e w-e w-e w-e

evolution of load in the first 
week of January 2015

w-e

holidays

holidays

| | |
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Power consumed in Europe and in Belgium

Monthly power in ENTSOe networks  =
𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑛𝑡ℎ (𝐺𝑊ℎ)

𝑛𝑏 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑛𝑡ℎ × 24

source: ENTSOe

Year Date Time Day Power (MW)

2010 Dec 14 18:00 Tue 14 390

2013 Jan 17 18:00 Tue 13 255

2014 Dec 4 18:00 Thu 12 736

2015 Jan 22 18:00 Thu 12 696

2016 Jan 19 18:00 Thu 12 679

2017 Jan 18 18:00 Thu 13 270

2018 Nov 19 18:00 Mon 13 453

Peak loads 
recorded on 
the Belgian 
transmission 
system

source: 
ENTSOe
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From large centralized to small dispersed power plants

Evolution of Danish power system over the period 1980-2005
(Z. Xu, M. Gordon, M. Lind, J. Østergaard, “Towards a Danish Power System with 50% Wind - Smart Grids Activities in Denmark”, 

IEEEXplore, 2009 )

16 central power plants
16 central power plants + 1000 local CHPs

+ 6000 wind turbines

Denmark : a country with huge penetration of renewable energy sources
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Sources of electrical energy in Belgium in 2018

Category Energy source Generation capacity
Dec 2018

Energy produced
in 2018

Capacity
factor

MW % total TWh % total %

Nuclear total 5 919 26.0 27.0 39.0 52

Non renewable 
non nuclear

gas 22.1

others 3.4

total 7 680 33.7 25.5 36.9  38

Hydro pumping stations 1 308 1.0 9

run-of-river 125 0.3 27

total 1 433 6.3 1.3 1.9

Renewable
non hydro

wind 3 247 7.1 25

solar (PV) 3 581 3.5 11

biomass-biogas 811 3.5 49

wastes 1.2

total 7 764 34.1 15.3 22.1

TOTAL 22 796 100 69.1 100

source : ENTSOe
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Comments on previous slide

• “Nuclear generation capacity” involves all units, even those temporarily shut 
down for technical reasons, or waiting for the decision to extend their lifetime

• gas power plants includes small CHP (Combined Heat Power) units

• same for biomass plants

• purposes of pumping storage :

1.    pumping : convert electrical energy into mechanical (potential) energy when  
demand is low compared to available generation (e.g. during night)

turbining : reverse operation when demand is high (e.g. at day peak)
 “peak shaving” and “valley filling” of daily load curve

efficiency of whole cycle   85 %
usually profitable since cost of electricity higher when demand is high

2.    fast reserve : a hydro unit can be started (resp. pumping stopped) quickly to 
replace a generation unit that is taken out of service 

3.    allows keeping base units (e.g. nuclear) in operation when load is very low

• Capacity Factor  =  
𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 1 𝑦𝑒𝑎𝑟 (𝑀𝑊ℎ)

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑀𝑊  365 24 (ℎ)

• usually close to 90 % for nuclear, but some Belgian units have high unavailability 
• note the low value for solar energy !
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• Early retirement of gas power plants

• not enough competitive on electricity market, too expensive to maintain

•  political decision to keep a “strategic reserve” !

• natural hydro resources saturated in Belgium

• there are plans to expand the pumping storage

• Coo power plant : currently  (3  158  +  3  230  =) 1164 MW  installed capacity

• wind energy :

• public opposition to new on-shore wind farms (densely populated country !)

NIMBY attitude :   Not In My BackYard

• off-shore wind farms have a higher capacity factor than on-shore ones: wind is 
more steady in the sea

• Belgian off-shore wind farms in 2018 : 

5 wind parks with an installed capacity of 1186 MW have produced 3,408 TWh

 Capacity Factor =  
3,408 106

1186 × 365 ×24
=  32 %

• still a great potential for new off-shore wind farms :

3 under construction (+ 1076 MW)  8 TWh production expected in 2020

Some trends in Belgium
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hour of the 
year 2013

hour of the 
year 2013

Examples of 
variability of 

wind and 
photovoltaic
generation

(Germany)



21

Conservation of Energy over an infinitesimal time  𝑑𝑡 :

𝑑𝐸𝑔𝑒𝑛 = 𝑑𝐸𝑐𝑜𝑛𝑠 + 𝑑𝐸𝑙𝑜𝑠𝑡 + 𝑑𝐸𝑛𝑒𝑡

Introducing the corresponding powers at time 𝑡

𝑝𝑔𝑒𝑛 𝑡 . 𝑑𝑡 = 𝑝𝑐𝑜𝑛𝑠 𝑡 . 𝑑𝑡 + 𝑝𝑙𝑜𝑠𝑡 𝑡 . 𝑑𝑡 + 𝑝𝑛𝑒𝑡 𝑡 . 𝑑𝑡

 𝑝𝑔𝑒𝑛(𝑡) = 𝑝𝑐𝑜𝑛𝑠 𝑡 + 𝑝𝑙𝑜𝑠𝑡 𝑡 + 𝑝𝑛𝑒𝑡 𝑡

𝑝𝑐𝑜𝑛𝑠 𝑡

• The consumers decide how much power they want to consume !

• this demand fluctuates at any time

The power balance issue

AC network
𝑑𝐸𝑔𝑒𝑛

consumers
stored

𝑑𝐸𝑐𝑜𝑛𝑠

𝑑𝐸𝑛𝑒𝑡

losses
𝑑𝐸𝑙𝑜𝑠𝑡

electrical 
generators

primary energy 
sources

co
n

ve
rs

io
n



𝑝𝑛𝑒𝑡 𝑡

• Network elements which store electrical energy : inductors and capacitors

Example of inductor

𝑖 𝑡 = 2 𝐼 cos𝜔𝑡

𝐸𝑚𝑎𝑔𝑛 =
1

2
𝐿𝐼2(1 + cos 2𝜔𝑡)

𝑝 = 𝑑𝐸𝑚𝑎𝑔𝑛/𝑑𝑡
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• In sinusoidal steady state, the power in an 
inductor (or a capacitor) reverts every quarter 
of a period, and is zero on the average

• in balanced three-phase operation, the sum 
of the powers in the inductors/capacitors of 
the three phases is zero at any time !

• hence, electrical energy cannot be stored in 
the AC network

• to be stored, electrical energy has to be 
converted into another form of energy

• mechanical: e.g. potential energy of water     
in the upper reservoir of a pumping station, 
flywheels, etc.

• chemical: batteries (but amounts of stored 
energy are still very small !!)



𝑝𝑙𝑜𝑠𝑡 𝑡

• Losses mainly due to Joule effects   depend on currents in components

• kept as small as possible, not really controllable

Conclusion

• The variations of load power have to be compensated by the generators

• but the conversion (primary energy  electrical energy) is not instantaneous

• example: changing the flow of steam or water in a turbine takes a few seconds

• hence, an “energy buffer” is needed to quickly compensate power imbalances 

• this is provided by the rotating masses of synchronous generators

• a deficit (resp. excess) of generation wrt load results in a decrease (resp. increase) 
of speed of rotation speeds (and hence, frequency)

• in a synchronous generator and its turbine, kinetic energy  nominal power of the 
generator produced during 2 to 5 seconds

• controlling the power balance in a power system without rotating machines (only 
power electronic interfaces) would be a challenge (still at research level) !

• larger variations in load (e.g. during the day) require starting up/shutting 
down power plants ahead of time 23
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Motivations :

• mutual support between partners to face the loss of generation units

• each partner would have to set up a larger “reserve” if it would operate isolated

• larger diversity of energy sources available within the interconnection

• allows exploiting complementarity of nuclear, hydro and wind power plants

• allows partners to sell/buy energy, to create a large electricity market.

Constraints :

• if one partner is unable to properly “contain” a major incident, the effects may propagate 
to the other partners’ networks

• a transaction from one point to another cannot be forced to follow a “contractual” path; 
it distributes over parallel paths (“wheeling”) : see example in slide # 27. 

Partners not involved in the transaction undergo the effects of the power flow.

• in large AC interconnections, there may be emergence of badly damped interarea 
electromechanical oscillations (frequency in the range 0.1 - 0.5 Hz)

• rotors of synchronous generators in one area oscillate against the rotors of generators located 
in another area

• it may not be possible to connect two networks with different power quality standards

Large AC interconnections
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European
networks

ENTSOe :

European Network of 
Transmission System 

Operators 
for electricity

41 Transmission System 
Operators (TSOs)  from 

34 countries

www.entsoe.eu

energy flows in 
2018 (in GWh)
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The synchronous grids of Europe

RG = 
Regional 

Group

source : ENTSOe
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Example of paths followed by power due to a transaction

Paths taken by a production increment of 100 MW in Belgium

covered by a load increase of 100 MW in Italy (variation of losses neglected)
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• Advances in power electronics   rectifiers and inverters able to carry larger 
currents through higher voltages  transmission applications made possible

• 1st use :  transmission over longer distances through overhead lines

The come-back of Direct Current

dark blue: AC transmission at 735 kV

light blue: HVDC link : 
1018 km    450 kV   2000 MW

“backbone” 
transmission 

system of 
Hydro-Québec
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• 2nd use :  transmission through submarine cables

• DC more attractive than AC for distances above  50 km : owing to capacitive effects 
of AC cables

• existing links in Europe : see slide # 25

• projects involving Belgium: Nemo with England, Alegro with Germany : see slide # 9

• connection of off-shore wind parks :

The come-back of Direct Current

AC and DC connections of 
off-shore wind parks in 

North Sea to the grid of 
the Tennet German TSO

(links under construction 
shown with dotted lines)

source : ENTSOe
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• 3rd use :  connection of AC networks with different frequencies

• two networks with different nominal frequencies

• connection of 50 and 60 Hz systems in Japan

• connection of Brazil at 60 Hz with Argentina at 50 Hz

• two networks that have the same nominal
frequency but cannot be merged into a single
AC network, e.g. for stability reasons

• UCTE and Russian (IPS/UPS) system

• Eastern - Western interconnections
in North-America

• Western Europe : see slides #25 and 26. 

The come-back of Direct Current


